{"title":"Dexmedetomidine alleviates Hypoxia/reoxygenation-induced mitochondrial dysfunction in cardiomyocytes via activation of Sirt3/Prdx3 pathway.","authors":"Qingyun Tan, Wenming Dong, Qingdong Wang, Li Gao","doi":"10.1007/s40199-024-00504-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myocardial ischemia/reperfusion injury (MIRI) seriously threatens the health of people. The mitochondrial dysfunction in cardiomyocytes can promote the progression of MIRI. Dexmedetomidine (Dex) could alleviate the myocardial injury, which was known to reverse mitochondrial dysfunction in lung injury. However, the function of Dex in mitochondrial dysfunction during MIRI remains unclear.</p><p><strong>Objective: </strong>To assess the function of Dex in mitochondrial dysfunction during MIRI.</p><p><strong>Methods: </strong>To investigate the function of Dex in MIRI, H9C2 cells were placed in condition of hypoxia/reoxygenation (H/R). CCK8 assay was performed to test the cell viability, and the mitochondrial membrane potential was evaluated by JC-1 staining. In addition, the binding relationship between Sirt3 and Prdx3 was explored by Co-IP assay. Furthermore, the protein expressions were examined using western blot.</p><p><strong>Results: </strong>Dex could abolish H/R-induced mitochondrial dysfunction in H9C2 cells. In addition, H/R treatment significantly inhibited the expression of Sirt3, while Dex partially restored this phenomenon. Knockdown of Sirt3 or Prdx3 obviously reduced the protective effect of Dex on H/R-induced mitochondrial injury. Meanwhile, Sirt3 could enhance the function of Prdx3 via deacetylation of Prdx3.</p><p><strong>Conclusion: </strong>Dex was found to attenuate H/R-induced mitochondrial dysfunction in cardiomyocytes via activation of Sirt3/Prdx3 pathway. Thus, this study might shed new lights on exploring new strategies for the treatment of MIRI.</p>","PeriodicalId":10888,"journal":{"name":"DARU Journal of Pharmaceutical Sciences","volume":" ","pages":"189-196"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DARU Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40199-024-00504-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Myocardial ischemia/reperfusion injury (MIRI) seriously threatens the health of people. The mitochondrial dysfunction in cardiomyocytes can promote the progression of MIRI. Dexmedetomidine (Dex) could alleviate the myocardial injury, which was known to reverse mitochondrial dysfunction in lung injury. However, the function of Dex in mitochondrial dysfunction during MIRI remains unclear.
Objective: To assess the function of Dex in mitochondrial dysfunction during MIRI.
Methods: To investigate the function of Dex in MIRI, H9C2 cells were placed in condition of hypoxia/reoxygenation (H/R). CCK8 assay was performed to test the cell viability, and the mitochondrial membrane potential was evaluated by JC-1 staining. In addition, the binding relationship between Sirt3 and Prdx3 was explored by Co-IP assay. Furthermore, the protein expressions were examined using western blot.
Results: Dex could abolish H/R-induced mitochondrial dysfunction in H9C2 cells. In addition, H/R treatment significantly inhibited the expression of Sirt3, while Dex partially restored this phenomenon. Knockdown of Sirt3 or Prdx3 obviously reduced the protective effect of Dex on H/R-induced mitochondrial injury. Meanwhile, Sirt3 could enhance the function of Prdx3 via deacetylation of Prdx3.
Conclusion: Dex was found to attenuate H/R-induced mitochondrial dysfunction in cardiomyocytes via activation of Sirt3/Prdx3 pathway. Thus, this study might shed new lights on exploring new strategies for the treatment of MIRI.
期刊介绍:
DARU Journal of Pharmaceutical Sciences is a peer-reviewed journal published on behalf of Tehran University of Medical Sciences. The journal encompasses all fields of the pharmaceutical sciences and presents timely research on all areas of drug conception, design, manufacture, classification and assessment.
The term DARU is derived from the Persian name meaning drug or medicine. This journal is a unique platform to improve the knowledge of researchers and scientists by publishing novel articles including basic and clinical investigations from members of the global scientific community in the forms of original articles, systematic or narrative reviews, meta-analyses, letters, and short communications.