Machine Learning-Assisted Determination of C6H14 Mole Fraction From Molecular Emissions of Laser-Induced Hexane-Air Plasmas.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-07-01 Epub Date: 2024-02-25 DOI:10.1177/00037028241233309
Ashwin P Rao, Noshin Nawar, Christopher J Annesley
{"title":"Machine Learning-Assisted Determination of C<sub>6</sub>H<sub>14</sub> Mole Fraction From Molecular Emissions of Laser-Induced Hexane-Air Plasmas.","authors":"Ashwin P Rao, Noshin Nawar, Christopher J Annesley","doi":"10.1177/00037028241233309","DOIUrl":null,"url":null,"abstract":"<p><p>Laser-induced plasmas of materials containing hydrocarbons present strong carbon molecular emission features. Using these emissions to build models relating changes in spectral features to a physical parameter of the system, such as hydrocarbon content, can be difficult because of the dynamic complexity of the spectral features and temperature disequilibrium between molecular species. This study presents machine learning models trained to quantify the mole fraction of hexane in hexane-air plasmas from CN Violet and C<sub>2</sub> Swan spectral features. Ensemble regression methods provide the most accurate predictions with root mean squared error on the order 10<sup>-2</sup>. Artificial neural network regressions produce predictions with superlative sensitivity, exhibiting detection limits as low as 0.008. These foundational models can be further refined with more advanced data to quantify the presence of carbon species in complex plasma environments, such as high-speed reacting flows.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241233309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Laser-induced plasmas of materials containing hydrocarbons present strong carbon molecular emission features. Using these emissions to build models relating changes in spectral features to a physical parameter of the system, such as hydrocarbon content, can be difficult because of the dynamic complexity of the spectral features and temperature disequilibrium between molecular species. This study presents machine learning models trained to quantify the mole fraction of hexane in hexane-air plasmas from CN Violet and C2 Swan spectral features. Ensemble regression methods provide the most accurate predictions with root mean squared error on the order 10-2. Artificial neural network regressions produce predictions with superlative sensitivity, exhibiting detection limits as low as 0.008. These foundational models can be further refined with more advanced data to quantify the presence of carbon species in complex plasma environments, such as high-speed reacting flows.

机器学习辅助从激光诱导的己烷-空气等离子体的分子发射中确定 C6H14 分子分数。
含有碳氢化合物的材料的激光诱导等离子体具有强烈的碳分子发射特征。由于光谱特征的动态复杂性和分子物种之间的温度不平衡,利用这些发射建立光谱特征变化与系统物理参数(如碳氢化合物含量)相关的模型非常困难。本研究介绍了经过训练的机器学习模型,用于根据 CN 紫和 C2 天鹅光谱特征量化正己烷-空气等离子体中正己烷的摩尔分数。集合回归方法提供了最准确的预测,均方根误差在 10-2 数量级。人工神经网络回归法的预测灵敏度极高,检测限低至 0.008。这些基础模型可以利用更先进的数据进一步完善,以量化复杂等离子体环境(如高速反应流)中碳物种的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信