Study on the Influence of Different Internal Exhaust Gas Recirculation Formation Modes on the Combustion Performance of Gasoline, Methanol, and Ethanol SI Engine

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"Study on the Influence of Different Internal Exhaust Gas Recirculation Formation Modes on the Combustion Performance of Gasoline, Methanol, and Ethanol SI Engine","authors":"","doi":"10.1007/s12239-024-00039-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>To promote the efficient and clean application of low-carbon alcohol fuels in internal combustion engines, this article compares and studies the effects of three internal EGR strategies, including exhaust valve lift strategy (EVVL), exhaust timing advance strategy (EVT), and intake valve timing advance strategy (IVT), on the combustion, performance, and emissions of gasoline, methanol, and ethanol. Under the same internal EGR rate, the internal EGR temperature generated by the three valve strategies is, from highest to lowest, as follows: EVT, EVVL, and IVT. With an increase in internal EGR in the cylinder, the ignition delay and combustion duration under the EVVL and IVT strategies increase progressively, whereas the ignition delay under the EVT strategy tends to first shorten and then lengthen. Methanol has the shortest combustion duration. Furthermore, methanol and ethanol have lower heat transfer and exhaust losses than gasoline. The thermal efficiency of methanol, ethanol, and gasoline can be raised by 7.7%, 7.5%, and 7.2%, respectively, using the IVT strategy; 3.1%, 3.9%, and 4.6% using the EVVL strategy; and 6.82%, 6.85%, and 7% using the EVT strategy. The combination of methanol and ethanol with internal EGR technology greatly reduces NOx emissions, with an 84.5% reduction under the EVVL strategy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00039-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To promote the efficient and clean application of low-carbon alcohol fuels in internal combustion engines, this article compares and studies the effects of three internal EGR strategies, including exhaust valve lift strategy (EVVL), exhaust timing advance strategy (EVT), and intake valve timing advance strategy (IVT), on the combustion, performance, and emissions of gasoline, methanol, and ethanol. Under the same internal EGR rate, the internal EGR temperature generated by the three valve strategies is, from highest to lowest, as follows: EVT, EVVL, and IVT. With an increase in internal EGR in the cylinder, the ignition delay and combustion duration under the EVVL and IVT strategies increase progressively, whereas the ignition delay under the EVT strategy tends to first shorten and then lengthen. Methanol has the shortest combustion duration. Furthermore, methanol and ethanol have lower heat transfer and exhaust losses than gasoline. The thermal efficiency of methanol, ethanol, and gasoline can be raised by 7.7%, 7.5%, and 7.2%, respectively, using the IVT strategy; 3.1%, 3.9%, and 4.6% using the EVVL strategy; and 6.82%, 6.85%, and 7% using the EVT strategy. The combination of methanol and ethanol with internal EGR technology greatly reduces NOx emissions, with an 84.5% reduction under the EVVL strategy.

不同废气内部再循环形成模式对汽油、甲醇和乙醇 SI 发动机燃烧性能的影响研究
摘要 为促进低碳醇类燃料在内燃机中的高效清洁应用,本文比较研究了排气门升程策略(EVVL)、排气正时提前策略(EVT)和进气门正时提前策略(IVT)等三种内部EGR策略对汽油、甲醇和乙醇燃烧、性能和排放的影响。在相同的内部 EGR 率下,三种气门策略产生的内部 EGR 温度从高到低依次为:EVT、EVVL 和 IVT:EVT、EVVL 和 IVT。随着气缸内部 EGR 的增加,EVVL 和 IVT 策略下的点火延迟和燃烧持续时间逐渐增加,而 EVT 策略下的点火延迟先缩短后延长。甲醇的燃烧持续时间最短。此外,甲醇和乙醇的传热损失和排气损失也低于汽油。采用 IVT 策略时,甲醇、乙醇和汽油的热效率可分别提高 7.7%、7.5% 和 7.2%;采用 EVVL 策略时,可分别提高 3.1%、3.9% 和 4.6%;采用 EVT 策略时,可分别提高 6.82%、6.85% 和 7%。甲醇和乙醇与内部 EGR 技术的结合大大减少了氮氧化物的排放,在 EVVL 策略下减少了 84.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信