The rise of single-cell transcriptomics in yeast

IF 2.2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yeast Pub Date : 2024-02-25 DOI:10.1002/yea.3934
Mariona Nadal-Ribelles, Carme Solé, Eulalia de Nadal, Francesc Posas
{"title":"The rise of single-cell transcriptomics in yeast","authors":"Mariona Nadal-Ribelles, Carme Solé, Eulalia de Nadal, Francesc Posas","doi":"10.1002/yea.3934","DOIUrl":null,"url":null,"abstract":"The field of single-cell omics has transformed our understanding of biological processes and is constantly advancing both experimentally and computationally. One of the most significant developments is the ability to measure the transcriptome of individual cells by single-cell RNA-seq (scRNA-seq), which was pioneered in higher eukaryotes. While yeast has served as a powerful model organism in which to test and develop transcriptomic technologies, the implementation of scRNA-seq has been significantly delayed in this organism, mainly because of technical constraints associated with its intrinsic characteristics, namely the presence of a cell wall, a small cell size and little amounts of RNA. In this review, we examine the current technologies for scRNA-seq in yeast and highlight their strengths and weaknesses. Additionally, we explore opportunities for developing novel technologies and the potential outcomes of implementing single-cell transcriptomics and extension to other modalities. Undoubtedly, scRNA-seq will be invaluable for both basic and applied yeast research, providing unique insights into fundamental biological processes.","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3934","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The field of single-cell omics has transformed our understanding of biological processes and is constantly advancing both experimentally and computationally. One of the most significant developments is the ability to measure the transcriptome of individual cells by single-cell RNA-seq (scRNA-seq), which was pioneered in higher eukaryotes. While yeast has served as a powerful model organism in which to test and develop transcriptomic technologies, the implementation of scRNA-seq has been significantly delayed in this organism, mainly because of technical constraints associated with its intrinsic characteristics, namely the presence of a cell wall, a small cell size and little amounts of RNA. In this review, we examine the current technologies for scRNA-seq in yeast and highlight their strengths and weaknesses. Additionally, we explore opportunities for developing novel technologies and the potential outcomes of implementing single-cell transcriptomics and extension to other modalities. Undoubtedly, scRNA-seq will be invaluable for both basic and applied yeast research, providing unique insights into fundamental biological processes.

Abstract Image

酵母中单细胞转录组学的兴起
单细胞全息研究领域改变了我们对生物过程的理解,并在实验和计算方面不断取得进展。其中最重要的进展之一是通过单细胞 RNA-seq(scRNA-seq)测量单个细胞转录组的能力。虽然酵母是测试和开发转录组技术的强大模式生物,但 scRNA-seq 在该生物体中的实施却被大大推迟,主要原因是其固有特性(即存在细胞壁、细胞体积小和 RNA 数量少)带来的技术限制。在这篇综述中,我们研究了目前在酵母中进行 scRNA 测序的技术,并强调了这些技术的优缺点。此外,我们还探讨了开发新技术的机会,以及实施单细胞转录组学和扩展到其他模式的潜在结果。毋庸置疑,scRNA-seq 对酵母的基础研究和应用研究都具有重要价值,能为基础生物过程提供独特的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Yeast
Yeast 生物-生化与分子生物学
CiteScore
5.30
自引率
3.80%
发文量
55
审稿时长
3 months
期刊介绍: Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology. Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信