ControlPULP: A RISC-V On-Chip Parallel Power Controller for Many-Core HPC Processors with FPGA-Based Hardware-In-The-Loop Power and Thermal Emulation

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Alessandro Ottaviano, Robert Balas, Giovanni Bambini, Antonio Del Vecchio, Maicol Ciani, Davide Rossi, Luca Benini, Andrea Bartolini
{"title":"ControlPULP: A RISC-V On-Chip Parallel Power Controller for Many-Core HPC Processors with FPGA-Based Hardware-In-The-Loop Power and Thermal Emulation","authors":"Alessandro Ottaviano, Robert Balas, Giovanni Bambini, Antonio Del Vecchio, Maicol Ciani, Davide Rossi, Luca Benini, Andrea Bartolini","doi":"10.1007/s10766-024-00761-4","DOIUrl":null,"url":null,"abstract":"<p>High-performance computing (HPC) processors are nowadays integrated cyber-physical systems demanding complex and high-bandwidth closed-loop power and thermal control strategies. To efficiently satisfy real-time multi-input multi-output (MIMO) optimal power requirements, high-end processors integrate an on-die power controller system (PCS). While traditional PCSs are based on a simple microcontroller (MCU)-class core, more scalable and flexible PCS architectures are required to support advanced MIMO control algorithms for managing the ever-increasing number of cores, power states, and process, voltage, and temperature variability. This paper presents ControlPULP, an open-source, HW/SW RISC-V parallel PCS platform consisting of a single-core MCU with fast interrupt handling coupled with a scalable multi-core programmable cluster accelerator and a specialized DMA engine for the parallel acceleration of real-time power management policies. ControlPULP relies on FreeRTOS to schedule a reactive power control firmware (PCF) application layer. We demonstrate ControlPULP in a power management use-case targeting a next-generation 72-core HPC processor. We first show that the multi-core cluster accelerates the PCF, achieving 4.9x speedup compared to single-core execution, enabling more advanced power management algorithms within the control hyper-period at a shallow area overhead, about 0.1% the area of a modern HPC CPU die. We then assess the PCS and PCF by designing an FPGA-based, closed-loop emulation framework that leverages the heterogeneous SoCs paradigm, achieving DVFS tracking with a mean deviation within 3% the plant’s thermal design power (TDP) against a software-equivalent model-in-the-loop approach. Finally, we show that the proposed PCF compares favorably with an industry-grade control algorithm under computational-intensive workloads.</p>","PeriodicalId":14313,"journal":{"name":"International Journal of Parallel Programming","volume":"242 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10766-024-00761-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance computing (HPC) processors are nowadays integrated cyber-physical systems demanding complex and high-bandwidth closed-loop power and thermal control strategies. To efficiently satisfy real-time multi-input multi-output (MIMO) optimal power requirements, high-end processors integrate an on-die power controller system (PCS). While traditional PCSs are based on a simple microcontroller (MCU)-class core, more scalable and flexible PCS architectures are required to support advanced MIMO control algorithms for managing the ever-increasing number of cores, power states, and process, voltage, and temperature variability. This paper presents ControlPULP, an open-source, HW/SW RISC-V parallel PCS platform consisting of a single-core MCU with fast interrupt handling coupled with a scalable multi-core programmable cluster accelerator and a specialized DMA engine for the parallel acceleration of real-time power management policies. ControlPULP relies on FreeRTOS to schedule a reactive power control firmware (PCF) application layer. We demonstrate ControlPULP in a power management use-case targeting a next-generation 72-core HPC processor. We first show that the multi-core cluster accelerates the PCF, achieving 4.9x speedup compared to single-core execution, enabling more advanced power management algorithms within the control hyper-period at a shallow area overhead, about 0.1% the area of a modern HPC CPU die. We then assess the PCS and PCF by designing an FPGA-based, closed-loop emulation framework that leverages the heterogeneous SoCs paradigm, achieving DVFS tracking with a mean deviation within 3% the plant’s thermal design power (TDP) against a software-equivalent model-in-the-loop approach. Finally, we show that the proposed PCF compares favorably with an industry-grade control algorithm under computational-intensive workloads.

Abstract Image

ControlPULP:用于多核高性能计算处理器的 RISC-V 片上并行功率控制器,具有基于 FPGA 的硬件在环功率和热仿真功能
如今,高性能计算(HPC)处理器已成为集成的网络物理系统,需要复杂的高带宽闭环功率和热控制策略。为有效满足实时多输入多输出(MIMO)的最佳功率要求,高端处理器集成了片上功率控制系统(PCS)。传统的 PCS 基于简单的微控制器(MCU)级内核,但需要更具可扩展性和灵活性的 PCS 架构来支持先进的 MIMO 控制算法,以管理不断增加的内核数量、功率状态以及工艺、电压和温度变化。本文介绍的 ControlPULP 是一个开源、硬件/软件 RISC-V 并行 PCS 平台,由一个具有快速中断处理功能的单核 MCU 和一个可扩展的多核可编程集群加速器以及一个专用 DMA 引擎组成,用于并行加速实时电源管理策略。ControlPULP 依靠 FreeRTOS 调度无功功率控制固件 (PCF) 应用层。我们在针对下一代 72 核高性能计算处理器的电源管理用例中演示了 ControlPULP。我们首先展示了多核集群对 PCF 的加速作用,与单核执行相比,PCF 的速度提高了 4.9 倍,在控制超周期内以较小的面积开销(约为现代 HPC CPU 芯片面积的 0.1%)实现了更先进的电源管理算法。然后,我们通过设计一个基于 FPGA 的闭环仿真框架来评估 PCS 和 PCF,该框架利用异构 SoC 范例实现了 DVFS 跟踪,与软件等价模型在环方法相比,平均偏差在工厂热设计功率 (TDP) 的 3% 以内。最后,我们表明,在计算密集型工作负载下,所提出的 PCF 可与工业级控制算法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Parallel Programming
International Journal of Parallel Programming 工程技术-计算机:理论方法
CiteScore
4.40
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: International Journal of Parallel Programming is a forum for the publication of peer-reviewed, high-quality original papers in the computer and information sciences, focusing specifically on programming aspects of parallel computing systems. Such systems are characterized by the coexistence over time of multiple coordinated activities. The journal publishes both original research and survey papers. Fields of interest include: linguistic foundations, conceptual frameworks, high-level languages, evaluation methods, implementation techniques, programming support systems, pragmatic considerations, architectural characteristics, software engineering aspects, advances in parallel algorithms, performance studies, and application studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信