MC-DBN: A Deep Belief Network-Based Model for Modality Completion

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.09782
Zihong Luo, Haochen Xue, Mingyu Jin, Chengzhi Liu, Zile Huang, Chong Zhang, Shuliang Zhao
{"title":"MC-DBN: A Deep Belief Network-Based Model for Modality Completion","authors":"Zihong Luo, Haochen Xue, Mingyu Jin, Chengzhi Liu, Zile Huang, Chong Zhang, Shuliang Zhao","doi":"10.48550/arXiv.2402.09782","DOIUrl":null,"url":null,"abstract":"Recent advancements in multi-modal artificial intelligence (AI) have revolutionized the fields of stock market forecasting and heart rate monitoring. Utilizing diverse data sources can substantially improve prediction accuracy. Nonetheless, additional data may not always align with the original dataset. Interpolation methods are commonly utilized for handling missing values in modal data, though they may exhibit limitations in the context of sparse information. Addressing this challenge, we propose a Modality Completion Deep Belief Network-Based Model (MC-DBN). This approach utilizes implicit features of complete data to compensate for gaps between itself and additional incomplete data. It ensures that the enhanced multi-modal data closely aligns with the dynamic nature of the real world to enhance the effectiveness of the model. We conduct evaluations of the MC-DBN model in two datasets from the stock market forecasting and heart rate monitoring domains. Comprehensive experiments showcase the model's capacity to bridge the semantic divide present in multi-modal data, subsequently enhancing its performance. The source code is available at: https://github.com/logan-0623/DBN-generate","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"21 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.09782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in multi-modal artificial intelligence (AI) have revolutionized the fields of stock market forecasting and heart rate monitoring. Utilizing diverse data sources can substantially improve prediction accuracy. Nonetheless, additional data may not always align with the original dataset. Interpolation methods are commonly utilized for handling missing values in modal data, though they may exhibit limitations in the context of sparse information. Addressing this challenge, we propose a Modality Completion Deep Belief Network-Based Model (MC-DBN). This approach utilizes implicit features of complete data to compensate for gaps between itself and additional incomplete data. It ensures that the enhanced multi-modal data closely aligns with the dynamic nature of the real world to enhance the effectiveness of the model. We conduct evaluations of the MC-DBN model in two datasets from the stock market forecasting and heart rate monitoring domains. Comprehensive experiments showcase the model's capacity to bridge the semantic divide present in multi-modal data, subsequently enhancing its performance. The source code is available at: https://github.com/logan-0623/DBN-generate
MC-DBN:基于深度信念网络的模态完成模型
多模式人工智能(AI)的最新进展给股市预测和心率监测领域带来了革命性的变化。利用不同的数据源可以大大提高预测的准确性。然而,附加数据并不总能与原始数据集保持一致。插值方法通常用于处理模态数据中的缺失值,但在信息稀疏的情况下,这些方法可能会表现出局限性。为了应对这一挑战,我们提出了一种基于模态完成深度信念网络的模型(MC-DBN)。这种方法利用完整数据的隐含特征来弥补自身与其他不完整数据之间的差距。它能确保增强后的多模态数据与真实世界的动态特性紧密结合,从而提高模型的有效性。我们在股市预测和心率监测领域的两个数据集中对 MC-DBN 模型进行了评估。综合实验表明,该模型有能力弥合多模态数据中存在的语义鸿沟,从而提高其性能。源代码可在以下网址获取: https://github.com/logan-0623/DBN-generate
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信