Multi-Excitation Projective Simulation with a Many-Body Physics Inspired Inductive Bias

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.10192
Philip A. LeMaitre, Marius Krumm, H. Briegel
{"title":"Multi-Excitation Projective Simulation with a Many-Body Physics Inspired Inductive Bias","authors":"Philip A. LeMaitre, Marius Krumm, H. Briegel","doi":"10.48550/arXiv.2402.10192","DOIUrl":null,"url":null,"abstract":"With the impressive progress of deep learning, applications relying on machine learning are increasingly being integrated into daily life. However, most deep learning models have an opaque, oracle-like nature making it difficult to interpret and understand their decisions. This problem led to the development of the field known as eXplainable Artificial Intelligence (XAI). One method in this field known as Projective Simulation (PS) models a chain-of-thought as a random walk of a particle on a graph with vertices that have concepts attached to them. While this description has various benefits, including the possibility of quantization, it cannot be naturally used to model thoughts that combine several concepts simultaneously. To overcome this limitation, we introduce Multi-Excitation Projective Simulation (mePS), a generalization that considers a chain-of-thought to be a random walk of several particles on a hypergraph. A definition for a dynamic hypergraph is put forward to describe the agent's training history along with applications to AI and hypergraph visualization. An inductive bias inspired by the remarkably successful few-body interaction models used in quantum many-body physics is formalized for our classical mePS framework and employed to tackle the exponential complexity associated with naive implementations of hypergraphs. We prove that our inductive bias reduces the complexity from exponential to polynomial, with the exponent representing the cutoff on how many particles can interact. We numerically apply our method to two toy environments and a more complex scenario modelling the diagnosis of a broken computer. These environments demonstrate the resource savings provided by an appropriate choice of inductive bias, as well as showcasing aspects of interpretability. A quantum model for mePS is also briefly outlined and some future directions for it are discussed.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"16 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.10192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the impressive progress of deep learning, applications relying on machine learning are increasingly being integrated into daily life. However, most deep learning models have an opaque, oracle-like nature making it difficult to interpret and understand their decisions. This problem led to the development of the field known as eXplainable Artificial Intelligence (XAI). One method in this field known as Projective Simulation (PS) models a chain-of-thought as a random walk of a particle on a graph with vertices that have concepts attached to them. While this description has various benefits, including the possibility of quantization, it cannot be naturally used to model thoughts that combine several concepts simultaneously. To overcome this limitation, we introduce Multi-Excitation Projective Simulation (mePS), a generalization that considers a chain-of-thought to be a random walk of several particles on a hypergraph. A definition for a dynamic hypergraph is put forward to describe the agent's training history along with applications to AI and hypergraph visualization. An inductive bias inspired by the remarkably successful few-body interaction models used in quantum many-body physics is formalized for our classical mePS framework and employed to tackle the exponential complexity associated with naive implementations of hypergraphs. We prove that our inductive bias reduces the complexity from exponential to polynomial, with the exponent representing the cutoff on how many particles can interact. We numerically apply our method to two toy environments and a more complex scenario modelling the diagnosis of a broken computer. These environments demonstrate the resource savings provided by an appropriate choice of inductive bias, as well as showcasing aspects of interpretability. A quantum model for mePS is also briefly outlined and some future directions for it are discussed.
受多体物理学启发的电感偏置多激励投射模拟
随着深度学习取得令人瞩目的进展,依赖机器学习的应用正越来越多地融入日常生活。然而,大多数深度学习模型都具有不透明、类似甲骨文的性质,因此很难解释和理解其决策。这一问题导致了可解释人工智能(XAI)领域的发展。该领域的一种方法被称为 "投影模拟"(Projective Simulation,PS),它将思维链建模为粒子在图形上的随机行走,而图形的顶点都附有概念。虽然这种描述方法有各种优点,包括量化的可能性,但它无法自然地用于模拟同时结合多个概念的思维。为了克服这一局限,我们引入了多激发投影模拟(mePS),这是一种将思维链视为超图上多个粒子随机行走的概括。我们提出了动态超图的定义,以描述代理的训练历史,并将其应用于人工智能和超图可视化。量子多体物理学中使用的少体相互作用模型取得了巨大成功,受此启发,我们为经典的 mePS 框架正式确定了归纳偏差,并利用它来解决与超图的天真实现相关的指数级复杂性问题。我们证明,我们的归纳偏差将复杂性从指数级降低到了多项式级,指数代表了粒子相互作用数量的截止值。我们将我们的方法应用于两个玩具环境和一个更复杂的计算机故障诊断模型。这些环境表明,选择适当的归纳偏差可以节省资源,并展示了可解释性的各个方面。此外,还简要介绍了 mePS 的量子模型,并讨论了该模型的一些未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信