Zero-Shot Unsupervised and Text-Based Audio Editing Using DDPM Inversion

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.10009
Hila Manor, T. Michaeli
{"title":"Zero-Shot Unsupervised and Text-Based Audio Editing Using DDPM Inversion","authors":"Hila Manor, T. Michaeli","doi":"10.48550/arXiv.2402.10009","DOIUrl":null,"url":null,"abstract":"Editing signals using large pre-trained models, in a zero-shot manner, has recently seen rapid advancements in the image domain. However, this wave has yet to reach the audio domain. In this paper, we explore two zero-shot editing techniques for audio signals, which use DDPM inversion on pre-trained diffusion models. The first, adopted from the image domain, allows text-based editing. The second, is a novel approach for discovering semantically meaningful editing directions without supervision. When applied to music signals, this method exposes a range of musically interesting modifications, from controlling the participation of specific instruments to improvisations on the melody. Samples and code can be found on our examples page in https://hilamanor.github.io/AudioEditing/ .","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"30 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.10009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Editing signals using large pre-trained models, in a zero-shot manner, has recently seen rapid advancements in the image domain. However, this wave has yet to reach the audio domain. In this paper, we explore two zero-shot editing techniques for audio signals, which use DDPM inversion on pre-trained diffusion models. The first, adopted from the image domain, allows text-based editing. The second, is a novel approach for discovering semantically meaningful editing directions without supervision. When applied to music signals, this method exposes a range of musically interesting modifications, from controlling the participation of specific instruments to improvisations on the melody. Samples and code can be found on our examples page in https://hilamanor.github.io/AudioEditing/ .
使用 DDPM 反转技术进行零镜头无监督和基于文本的音频编辑
最近,利用大型预训练模型以零镜头方式编辑信号的技术在图像领域取得了飞速发展。然而,这一浪潮尚未波及音频领域。在本文中,我们探索了两种针对音频信号的零镜头编辑技术,它们在预训练的扩散模型上使用 DDPM 反演。第一种技术采用图像领域的技术,可进行基于文本的编辑。第二种是一种新颖的方法,可以在没有监督的情况下发现语义上有意义的编辑方向。当应用于音乐信号时,这种方法可以实现一系列音乐上有趣的修改,从控制特定乐器的参与到对旋律的即兴创作。示例和代码可在我们的示例页面 https://hilamanor.github.io/AudioEditing/ 上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信