Partial synchrony for free? New bounds for Byzantine agreement via a generic transformation across network models

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.10059
P. Civit, M. A. Dzulfikar, S. Gilbert, R. Guerraoui, J. Komatovic, M. Vidigueira, I. Zablotchi
{"title":"Partial synchrony for free? New bounds for Byzantine agreement via a generic transformation across network models","authors":"P. Civit, M. A. Dzulfikar, S. Gilbert, R. Guerraoui, J. Komatovic, M. Vidigueira, I. Zablotchi","doi":"10.48550/arXiv.2402.10059","DOIUrl":null,"url":null,"abstract":"Byzantine consensus allows n processes to decide on a common value, in spite of arbitrary failures. The seminal Dolev-Reischuk bound states that any deterministic solution to Byzantine consensus exchanges Omega(n^2) bits. In recent years, great advances have been made in deterministic Byzantine agreement for partially synchronous networks, with state-of-the-art cryptographic solutions achieving O(n^2 \\kappa) bits (where $\\kappa$ is the security parameter) and nearly matching the lower bound. In contrast, for synchronous networks, optimal solutions with O(n^2) bits, with no cryptography and the same failure tolerance, have been known for more than three decades. Can this gap in network models be closed? In this paper, we present Repeater, the first generic transformation of Byzantine agreement algorithms from synchrony to partial synchrony. Repeater is modular, relying on existing and novel algorithms for its sub-modules. With the right choice of modules, Repeater requires no additional cryptography, is optimally resilient (n = 3t+1, where t is the maximum number of failures) and, for constant-size inputs, preserves the worst-case per-process bit complexity of the transformed synchronous algorithm. Leveraging Repeater, we present the first partially synchronous algorithm that (1) achieves optimal bit complexity (O(n^2) bits), (2) resists a computationally unbounded adversary (no cryptography), and (3) is optimally-resilient (n = 3t+1), thus showing that the Dolev-Reischuk bound is tight in partial synchrony. Moreover, we adapt Repeater for long inputs, introducing several new algorithms with improved complexity and weaker (or completely absent) cryptographic assumptions.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"12 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.10059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Byzantine consensus allows n processes to decide on a common value, in spite of arbitrary failures. The seminal Dolev-Reischuk bound states that any deterministic solution to Byzantine consensus exchanges Omega(n^2) bits. In recent years, great advances have been made in deterministic Byzantine agreement for partially synchronous networks, with state-of-the-art cryptographic solutions achieving O(n^2 \kappa) bits (where $\kappa$ is the security parameter) and nearly matching the lower bound. In contrast, for synchronous networks, optimal solutions with O(n^2) bits, with no cryptography and the same failure tolerance, have been known for more than three decades. Can this gap in network models be closed? In this paper, we present Repeater, the first generic transformation of Byzantine agreement algorithms from synchrony to partial synchrony. Repeater is modular, relying on existing and novel algorithms for its sub-modules. With the right choice of modules, Repeater requires no additional cryptography, is optimally resilient (n = 3t+1, where t is the maximum number of failures) and, for constant-size inputs, preserves the worst-case per-process bit complexity of the transformed synchronous algorithm. Leveraging Repeater, we present the first partially synchronous algorithm that (1) achieves optimal bit complexity (O(n^2) bits), (2) resists a computationally unbounded adversary (no cryptography), and (3) is optimally-resilient (n = 3t+1), thus showing that the Dolev-Reischuk bound is tight in partial synchrony. Moreover, we adapt Repeater for long inputs, introducing several new algorithms with improved complexity and weaker (or completely absent) cryptographic assumptions.
部分同步免费?通过跨网络模型的通用转换实现拜占庭协议的新界限
拜占庭共识允许 n 个进程在任意失败的情况下决定一个共同值。开创性的 Dolev-Reischuk 定界指出,拜占庭共识的任何确定性解决方案都会交换欧米茄(n^2)比特。近年来,部分同步网络的确定性拜占庭协议取得了长足进步,最先进的加密解决方案实现了 O(n^2 \kappa) 比特(其中 $\kappa$ 是安全参数),并几乎与下界相匹配。与此相反,对于同步网络,在没有加密技术和相同故障容忍度的情况下,实现 O(n^2) 比特的最佳解决方案已经问世三十多年了。网络模型中的这一差距能否弥合?在本文中,我们提出了 Repeater,这是拜占庭协议算法从同步到部分同步的首次通用转换。Repeater 是模块化的,其子模块依赖于现有的和新颖的算法。通过正确选择模块,Repeater 不需要额外的加密技术,具有最佳弹性(n = 3t+1,其中 t 为最大故障次数),并且对于恒定大小的输入,保留了转换后同步算法的最坏情况下的每个进程比特复杂度。利用 Repeater,我们提出了第一种部分同步算法,该算法 (1) 实现了最佳比特复杂度(O(n^2) 比特),(2) 抵御了计算上无限制的对手(无密码学),(3) 具有最佳弹性(n = 3t+1),从而证明了 Dolev-Reischuk 约束在部分同步中是紧密的。此外,我们还对 Repeater 进行了调整,使其适用于长输入,并引入了几种新算法,这些算法的复杂度有所提高,加密假设也更弱(或完全不存在)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信