User Privacy Harms and Risks in Conversational AI: A Proposed Framework

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.09716
Ece Gumusel, Kyrie Zhixuan Zhou, M. Sanfilippo
{"title":"User Privacy Harms and Risks in Conversational AI: A Proposed Framework","authors":"Ece Gumusel, Kyrie Zhixuan Zhou, M. Sanfilippo","doi":"10.48550/arXiv.2402.09716","DOIUrl":null,"url":null,"abstract":"This study presents a unique framework that applies and extends Solove (2006)'s taxonomy to address privacy concerns in interactions with text-based AI chatbots. As chatbot prevalence grows, concerns about user privacy have heightened. While existing literature highlights design elements compromising privacy, a comprehensive framework is lacking. Through semi-structured interviews with 13 participants interacting with two AI chatbots, this study identifies 9 privacy harms and 9 privacy risks in text-based interactions. Using a grounded theory approach for interview and chatlog analysis, the framework examines privacy implications at various interaction stages. The aim is to offer developers, policymakers, and researchers a tool for responsible and secure implementation of conversational AI, filling the existing gap in addressing privacy issues associated with text-based AI chatbots.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"13 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.09716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a unique framework that applies and extends Solove (2006)'s taxonomy to address privacy concerns in interactions with text-based AI chatbots. As chatbot prevalence grows, concerns about user privacy have heightened. While existing literature highlights design elements compromising privacy, a comprehensive framework is lacking. Through semi-structured interviews with 13 participants interacting with two AI chatbots, this study identifies 9 privacy harms and 9 privacy risks in text-based interactions. Using a grounded theory approach for interview and chatlog analysis, the framework examines privacy implications at various interaction stages. The aim is to offer developers, policymakers, and researchers a tool for responsible and secure implementation of conversational AI, filling the existing gap in addressing privacy issues associated with text-based AI chatbots.
人工智能对话中的用户隐私危害与风险:一个拟议框架
本研究提出了一个独特的框架,应用并扩展了 Solove(2006 年)的分类法,以解决与基于文本的人工智能聊天机器人交互过程中的隐私问题。随着聊天机器人的普及,人们对用户隐私的担忧也随之增加。虽然现有文献强调了损害隐私的设计要素,但缺乏一个全面的框架。本研究通过对与两个人工智能聊天机器人互动的 13 名参与者进行半结构式访谈,确定了基于文本的互动中的 9 种隐私危害和 9 种隐私风险。该框架采用基础理论方法进行访谈和聊天记录分析,研究了不同交互阶段的隐私影响。其目的是为开发人员、决策者和研究人员提供一个负责任地、安全地实施人工智能对话的工具,填补在解决与基于文本的人工智能聊天机器人相关的隐私问题方面的现有空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信