Unlocking Structure Measuring: Introducing PDD, an Automatic Metric for Positional Discourse Coherence

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.10175
Yinhong Liu, Yixuan Su, Ehsan Shareghi, Nigel Collier
{"title":"Unlocking Structure Measuring: Introducing PDD, an Automatic Metric for Positional Discourse Coherence","authors":"Yinhong Liu, Yixuan Su, Ehsan Shareghi, Nigel Collier","doi":"10.48550/arXiv.2402.10175","DOIUrl":null,"url":null,"abstract":"Recent large language models (LLMs) have shown remarkable performance in aligning generated text with user intentions across various tasks. When it comes to long-form text generation, there has been a growing interest in generation from a discourse coherence perspective. However, existing lexical or semantic metrics such as BLEU, ROUGE, BertScore cannot effectively capture the discourse coherence. The development of discourse-specific automatic evaluation methods for assessing the output of LLMs warrants greater focus and exploration. In this paper, we present a novel automatic metric designed to quantify the discourse divergence between two long-form articles. Extensive experiments on three datasets from representative domains demonstrate that our metric aligns more closely with human preferences and GPT-4 coherence evaluation, outperforming existing evaluation methods.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"26 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.10175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent large language models (LLMs) have shown remarkable performance in aligning generated text with user intentions across various tasks. When it comes to long-form text generation, there has been a growing interest in generation from a discourse coherence perspective. However, existing lexical or semantic metrics such as BLEU, ROUGE, BertScore cannot effectively capture the discourse coherence. The development of discourse-specific automatic evaluation methods for assessing the output of LLMs warrants greater focus and exploration. In this paper, we present a novel automatic metric designed to quantify the discourse divergence between two long-form articles. Extensive experiments on three datasets from representative domains demonstrate that our metric aligns more closely with human preferences and GPT-4 coherence evaluation, outperforming existing evaluation methods.
解锁结构测量:介绍 PDD--位置话语一致性的自动度量标准
最近的大型语言模型(LLM)在将生成的文本与各种任务中的用户意图相一致方面表现出色。说到长文本生成,人们对从语篇一致性角度生成文本越来越感兴趣。然而,现有的词汇或语义度量标准,如 BLEU、ROUGE、BertScore 等,无法有效捕捉语篇连贯性。因此,开发针对特定语篇的自动评估方法来评估 LLM 的输出值得我们更多关注和探索。在本文中,我们提出了一种新颖的自动度量方法,旨在量化两篇长篇文章之间的话语分歧。在三个代表性领域的数据集上进行的广泛实验表明,我们的度量方法与人类偏好和 GPT-4 连贯性评估更为一致,优于现有的评估方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信