Continued fractions in the field of 𝑝-adic numbers

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Giuliano Romeo
{"title":"Continued fractions in the field of 𝑝-adic numbers","authors":"Giuliano Romeo","doi":"10.1090/bull/1819","DOIUrl":null,"url":null,"abstract":"Continued fractions have a long history in number theory, especially in the area of Diophantine approximation. The aim of this expository paper is to survey the main results on the theory of \n\n \n p\n p\n \n\n-adic continued fractions, i.e., continued fractions defined over the field of \n\n \n p\n p\n \n\n-adic numbers \n\n \n \n \n Q\n \n p\n \n \\mathbb {Q}_p\n \n\n, which in the last years has recorded a considerable increase of interest and research activity. We start from the very first definitions up to the most recent developments and open problems.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/bull/1819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Continued fractions have a long history in number theory, especially in the area of Diophantine approximation. The aim of this expository paper is to survey the main results on the theory of p p -adic continued fractions, i.e., continued fractions defined over the field of p p -adic numbers Q p \mathbb {Q}_p , which in the last years has recorded a considerable increase of interest and research activity. We start from the very first definitions up to the most recent developments and open problems.
𝑝-adic数域中的连续分数
续分数在数论,尤其是在 Diophantine approximation 领域有着悠久的历史。本文的目的是考察 p p -adic 续分数理论的主要成果,即定义在 p p -adic 数域 Q p \mathbb {Q}_p 上的续分数,在过去几年中,人们对它的兴趣和研究活动大大增加。我们将从最初的定义开始,直到最新的发展和悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信