A Morpho-syntactic Analysis of Human-moderated Hate Speech Samples from Wykop.pl Web Service

Inez Okulska, Anna Kołos
{"title":"A Morpho-syntactic Analysis of Human-moderated Hate Speech Samples from Wykop.pl Web Service","authors":"Inez Okulska, Anna Kołos","doi":"10.7592/tertium.2023.8.2.245","DOIUrl":null,"url":null,"abstract":"The dynamic increase in user-generated content on the web presents significant challenges in protecting Internet users from exposure to offensive material, such as cyberbullying and hate speech, while also minimizing the spread of wrongful conduct. However, designing automated detection models for such offensive content remains complex, particularly in languages with limited publicly available data. To address this issue, our research collaborates with the Wykop.pl web service to fine-tune a model using genuine content that has been banned by professional moderators. In this paper, we focus on the Polish language and discuss the notion of datasets and annotation frameworks, presenting our stylometric analysis of Wykop.pl content to identify morpho-syntactic structures that are commonly applied in cyberbullying and hate speech. By doing so, we contribute to the ongoing discussion on offensive language and hate speech in sociolinguistic studies, emphasizing the need to consider user-generated online content.","PeriodicalId":471680,"journal":{"name":"Półrocznik Językoznawczy Tertium","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Półrocznik Językoznawczy Tertium","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.7592/tertium.2023.8.2.245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The dynamic increase in user-generated content on the web presents significant challenges in protecting Internet users from exposure to offensive material, such as cyberbullying and hate speech, while also minimizing the spread of wrongful conduct. However, designing automated detection models for such offensive content remains complex, particularly in languages with limited publicly available data. To address this issue, our research collaborates with the Wykop.pl web service to fine-tune a model using genuine content that has been banned by professional moderators. In this paper, we focus on the Polish language and discuss the notion of datasets and annotation frameworks, presenting our stylometric analysis of Wykop.pl content to identify morpho-syntactic structures that are commonly applied in cyberbullying and hate speech. By doing so, we contribute to the ongoing discussion on offensive language and hate speech in sociolinguistic studies, emphasizing the need to consider user-generated online content.
对 Wykop.pl 网络服务中由人类主持的仇恨言论样本进行形态句法分析
网络上用户生成的内容不断增加,这给保护互联网用户免受网络欺凌和仇恨言论等攻击性内容的影响,同时最大限度地减少不法行为的传播带来了巨大挑战。然而,设计此类攻击性内容的自动检测模型仍然很复杂,尤其是在公开数据有限的语言环境中。为了解决这个问题,我们的研究与 Wykop.pl 网络服务合作,利用被专业版主禁止的真实内容对模型进行微调。在本文中,我们以波兰语为重点,讨论了数据集和注释框架的概念,介绍了我们对 Wykop.pl 内容的文体计量分析,以识别网络欺凌和仇恨言论中常用的语态句法结构。通过这样做,我们为社会语言学研究中正在进行的有关攻击性语言和仇恨言论的讨论做出了贡献,强调了考虑用户生成的在线内容的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信