Pengembangan Sistem Cerdas Berbasis Data Mining untuk Meningkatkan Akurasi Prediksi Kebutuhan Obat di Puskesmas Parit Rantang

Al-DYAS Pub Date : 2024-02-19 DOI:10.58578/aldyas.v3i1.2736
Zahratul Jannah, Khairi Budayawan
{"title":"Pengembangan Sistem Cerdas Berbasis Data Mining untuk Meningkatkan Akurasi Prediksi Kebutuhan Obat di Puskesmas Parit Rantang","authors":"Zahratul Jannah, Khairi Budayawan","doi":"10.58578/aldyas.v3i1.2736","DOIUrl":null,"url":null,"abstract":"Effective inventory management is crucial in providing quality healthcare services. Predicting drug needs in the pharmacy warehouse is vital to ensuring adequate availability for patients. This study developed and implemented a prediction system using Artificial Neural Network (ANN) method to forecast drug requirements. Training data comprised drug usage from January 2020 to July 2023, while testing data covered drug usage from August to December 2023. Through several experiments, the best model identified was 12-6-1, with a Mean Absolute Percentage Error (MAPE) of 6.817 and an accuracy of 93.18%. Predictions for Paracetamol drug usage in August were 4603, whereas the actual usage was 4785. This system is expected to enhance drug inventory management efficiency, reduce costs, and improve drug availability for patients.","PeriodicalId":480025,"journal":{"name":"Al-DYAS","volume":"5 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-DYAS","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.58578/aldyas.v3i1.2736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective inventory management is crucial in providing quality healthcare services. Predicting drug needs in the pharmacy warehouse is vital to ensuring adequate availability for patients. This study developed and implemented a prediction system using Artificial Neural Network (ANN) method to forecast drug requirements. Training data comprised drug usage from January 2020 to July 2023, while testing data covered drug usage from August to December 2023. Through several experiments, the best model identified was 12-6-1, with a Mean Absolute Percentage Error (MAPE) of 6.817 and an accuracy of 93.18%. Predictions for Paracetamol drug usage in August were 4603, whereas the actual usage was 4785. This system is expected to enhance drug inventory management efficiency, reduce costs, and improve drug availability for patients.
开发基于数据挖掘的智能系统,提高 Puskesmas Parit Rantang 药物需求预测的准确性
有效的库存管理是提供优质医疗服务的关键。预测药房仓库的药品需求对于确保为患者提供充足的药品至关重要。本研究利用人工神经网络(ANN)方法开发并实施了一套预测系统,用于预测药品需求。训练数据包括 2020 年 1 月至 2023 年 7 月的药品使用情况,测试数据包括 2023 年 8 月至 12 月的药品使用情况。通过多次实验,确定的最佳模型为 12-6-1,平均绝对百分比误差(MAPE)为 6.817,准确率为 93.18%。八月份扑热息痛药物用量的预测值为 4603,而实际用量为 4785。该系统有望提高药品库存管理效率,降低成本,并改善病人的药品供应情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信