N. Elshaboury, Tarek Zayed, Eslam Mohammed Abdelkader
{"title":"A hybrid spherical fuzzy AHP-MARCOS model for evaluating the condition of saltwater pipes in Hong Kong","authors":"N. Elshaboury, Tarek Zayed, Eslam Mohammed Abdelkader","doi":"10.1108/ecam-08-2023-0777","DOIUrl":null,"url":null,"abstract":"PurposeWater pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective maintenance and rehabilitation strategies for water pipes based on reliable deterioration models and cost-effective inspection programs. In the light of foregoing, the paramount objective of this research study is to develop condition assessment and deterioration prediction models for saltwater pipes in Hong Kong.Design/methodology/approach As a perquisite to the development of condition assessment models, spherical fuzzy analytic hierarchy process (SFAHP) is harnessed to analyze the relative importance weights of deterioration factors. Afterward, the relative importance weights of deterioration factors coupled with their effective values are leveraged using the measurement of alternatives and ranking according to the compromise solution (MARCOS) algorithm to analyze the performance condition of water pipes. A condition rating system is then designed counting on the generalized entropy-based probabilistic fuzzy C means (GEPFCM) algorithm. A set of fourth order multiple regression functions are constructed to capture the degradation trends in condition of pipelines overtime covering their disparate characteristics.FindingsAnalytical results demonstrated that the top five influential deterioration factors comprise age, material, traffic, soil corrosivity and material. In addition, it was derived that developed deterioration models accomplished correlation coefficient, mean absolute error and root mean squared error of 0.8, 1.33 and 1.39, respectively.Originality/valueIt can be argued that generated deterioration models can assist municipalities in formulating accurate and cost-effective maintenance, repair and rehabilitation programs.","PeriodicalId":504601,"journal":{"name":"Engineering, Construction and Architectural Management","volume":"6 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Construction and Architectural Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ecam-08-2023-0777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeWater pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective maintenance and rehabilitation strategies for water pipes based on reliable deterioration models and cost-effective inspection programs. In the light of foregoing, the paramount objective of this research study is to develop condition assessment and deterioration prediction models for saltwater pipes in Hong Kong.Design/methodology/approach As a perquisite to the development of condition assessment models, spherical fuzzy analytic hierarchy process (SFAHP) is harnessed to analyze the relative importance weights of deterioration factors. Afterward, the relative importance weights of deterioration factors coupled with their effective values are leveraged using the measurement of alternatives and ranking according to the compromise solution (MARCOS) algorithm to analyze the performance condition of water pipes. A condition rating system is then designed counting on the generalized entropy-based probabilistic fuzzy C means (GEPFCM) algorithm. A set of fourth order multiple regression functions are constructed to capture the degradation trends in condition of pipelines overtime covering their disparate characteristics.FindingsAnalytical results demonstrated that the top five influential deterioration factors comprise age, material, traffic, soil corrosivity and material. In addition, it was derived that developed deterioration models accomplished correlation coefficient, mean absolute error and root mean squared error of 0.8, 1.33 and 1.39, respectively.Originality/valueIt can be argued that generated deterioration models can assist municipalities in formulating accurate and cost-effective maintenance, repair and rehabilitation programs.
目的由于与管道、土壤、操作和环境有关的各种因素,水管会随着时间的推移而老化。因此,市政当局有必要根据可靠的老化模型和具有成本效益的检查计划来实施有效的水管维护和修复策略。有鉴于此,本研究的首要目标是建立香港咸水管道的状况评估和老化预测模型。 设计/方法/方法 作为建立状况评估模型的前提条件,球形模糊分析层次过程(SFAHP)被用来分析老化因素的相对重要性权重。然后,利用替代方案的衡量和根据折衷方案排序(MARCOS)算法,利用劣化因素的相对重要性权重及其有效值来分析水管的性能状况。然后,根据基于广义熵的概率模糊 C 均值(GEPFCM)算法设计了一个状态评级系统。分析结果表明,前五大影响劣化因素包括管龄、材料、交通、土壤腐蚀性和材料。原创性/价值可以说,生成的劣化模型可以帮助市政当局制定准确且具有成本效益的维护、修理和修复计划。