A transhumeral prosthesis with an artificial neuromuscular system: Sim2real-guided design, modeling, and control

Alexander Toedtheide, Edmundo Pozo Fortunić, Johannes Kühn, Elisabeth Jensen, Sami Haddadin
{"title":"A transhumeral prosthesis with an artificial neuromuscular system: Sim2real-guided design, modeling, and control","authors":"Alexander Toedtheide, Edmundo Pozo Fortunić, Johannes Kühn, Elisabeth Jensen, Sami Haddadin","doi":"10.1177/02783649231218719","DOIUrl":null,"url":null,"abstract":"In this work we introduce a new type of human-inspired upper-limb prostheses. The Artificial Neuromuscular Prosthesis (ANP) imitates the human neuromuscular system in the sense of its compliance, backdrivability, natural motion, proprioceptive sensing, and kinesthetics. To realize this challenging goal, we introduce a novel human-inspired and simulation-based development paradigm to design the prosthesis mechatronics in correspondence to the human body. The ANP provides body awareness, contact awareness, and human-like contact response, realized via floating base rigid-body models, disturbance observers, and joint impedance control—concepts known from established state-of-the-art robotics. The ANP mechatronics is characterized by a four degrees of freedom (dof) torque-controlled human-like kinematics, a tendon-driven 2-dof wrist, and spatial orientation sensing at a weight of 1.7 kg (without hand and battery). The paper deals with the rigorous mathematical modeling, control, design and evaluation of this device type along initially defined requirements within a single prototype only. The proposed systemic and grasping capabilities are verified under laboratory conditions by an unimpaired user. Future work will increase the technology readiness level of the next generation device, where human studies with impaired users will be done.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649231218719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we introduce a new type of human-inspired upper-limb prostheses. The Artificial Neuromuscular Prosthesis (ANP) imitates the human neuromuscular system in the sense of its compliance, backdrivability, natural motion, proprioceptive sensing, and kinesthetics. To realize this challenging goal, we introduce a novel human-inspired and simulation-based development paradigm to design the prosthesis mechatronics in correspondence to the human body. The ANP provides body awareness, contact awareness, and human-like contact response, realized via floating base rigid-body models, disturbance observers, and joint impedance control—concepts known from established state-of-the-art robotics. The ANP mechatronics is characterized by a four degrees of freedom (dof) torque-controlled human-like kinematics, a tendon-driven 2-dof wrist, and spatial orientation sensing at a weight of 1.7 kg (without hand and battery). The paper deals with the rigorous mathematical modeling, control, design and evaluation of this device type along initially defined requirements within a single prototype only. The proposed systemic and grasping capabilities are verified under laboratory conditions by an unimpaired user. Future work will increase the technology readiness level of the next generation device, where human studies with impaired users will be done.
带有人工神经肌肉系统的跨肱骨假肢:仿真指导设计、建模和控制
在这项工作中,我们介绍了一种受人类启发的新型上肢假肢。人工神经肌肉假肢(ANP)在顺应性、反向驱动性、自然运动、本体感觉和运动学等方面模仿人类神经肌肉系统。为了实现这一具有挑战性的目标,我们引入了一种新颖的人体启发和仿真开发范例,设计出与人体相对应的假肢机电一体化系统。通过浮动基础刚体模型、干扰观测器和关节阻抗控制--这些都是最先进的机器人技术中已知的概念,ANP 提供了身体感知、接触感知和类人接触响应。ANP 机械电子学的特点是四自由度(dof)扭矩控制的类人运动学、腱驱动的两自由度手腕和空间方位感应,重量仅为 1.7 千克(不含手和电池)。本文仅在一个原型机内,根据最初确定的要求,对该设备类型进行了严格的数学建模、控制、设计和评估。在实验室条件下,由一名无障碍用户对所提出的系统和抓取能力进行了验证。未来的工作将提高下一代设备的技术就绪水平,并将对残障用户进行人体研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信