{"title":"Radiative Mixed Convection Flow of Casson Nanofluid through Exponentially Permeable Stretching Sheet with Internal Heat Generation","authors":"Mazhar Hussain, Shereen Fatima, Mubashir Qayyum","doi":"10.1155/2024/9038635","DOIUrl":null,"url":null,"abstract":"This paper investigates the mixed convection boundary-layer flow of Casson nanofluid with an internal heat source on an exponentially stretched sheet. The Buongiorno model, incorporating thermophoresis and Brownian motion, describes fluid temperature. The modeled system is solved numerically using bvp4c routine to analyze the impact of different fluid parameters on velocity, temperature, and concentration profiles. The analysis reveals that the suction effect, magnetic field, and Casson parameter reduce momentum boundary layer thickness and hence slow fluid motion. Conversely, buoyancy forces increase mass boundary layer thickness which results in accelerating fluid motion. Temperature and concentration profiles show similar trends for Brownian motion, radiation, and thermophoresis.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"242 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/9038635","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the mixed convection boundary-layer flow of Casson nanofluid with an internal heat source on an exponentially stretched sheet. The Buongiorno model, incorporating thermophoresis and Brownian motion, describes fluid temperature. The modeled system is solved numerically using bvp4c routine to analyze the impact of different fluid parameters on velocity, temperature, and concentration profiles. The analysis reveals that the suction effect, magnetic field, and Casson parameter reduce momentum boundary layer thickness and hence slow fluid motion. Conversely, buoyancy forces increase mass boundary layer thickness which results in accelerating fluid motion. Temperature and concentration profiles show similar trends for Brownian motion, radiation, and thermophoresis.
期刊介绍:
Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.