Rongfang Xie , Chenlu Li , Chenhui Zhong , Zuan Lin , Shaoguang Li , Bing Chen , Youjia Wu , Fen Hu , Peiying Shi , Hong Yao
{"title":"Integration of virtual screening and proteomics reveals potential targets and pathways for ginsenoside Rg1 against myocardial ischemia","authors":"Rongfang Xie , Chenlu Li , Chenhui Zhong , Zuan Lin , Shaoguang Li , Bing Chen , Youjia Wu , Fen Hu , Peiying Shi , Hong Yao","doi":"10.1016/j.jgr.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Ginsenoside Rg<sub>1</sub> (Rg<sub>1</sub>) is one of the main active components in Chinese medicines, <em>Panax ginseng</em> and <em>Panax notoginseng</em>. Research has shown that Rg<sub>1</sub> has a protective effect on the cardiovascular system, including anti-myocardial ischemia-reperfusion injury, anti-apoptosis, and promotion of myocardial angiogenesis, suggesting it a potential cardiovascular agent. However, the protective mechanism involved is still not fully understood.</p></div><div><h3>Methods</h3><p>Based on network pharmacology, ligand-based protein docking, proteomics, Western blot, protein recombination and spectroscopic analysis (UV–Vis and fluorescence spectra) techniques, potential targets and pathways for Rg<sub>1</sub> against myocardial ischemia (MI) were screened and explored.</p></div><div><h3>Results</h3><p>An important target set containing 19 proteins was constructed. Two target proteins with more favorable binding activity for Rg<sub>1</sub> against MI were further identified by molecular docking, including mitogen-activated protein kinase 1 (MAPK1) and adenosine kinase (ADK). Meanwhile, Rg<sub>1</sub> intervention on H9c2 cells injured by H<sub>2</sub>O<sub>2</sub> showed an inhibitory oxidative phosphorylation (OXPHOS) pathway. The inhibition of Rg<sub>1</sub> on MAPK1 and OXPHOS pathway was confirmed by Western blot assay. By protein recombination and spectroscopic analysis, the binding reaction between ADK and Rg<sub>1</sub> was also evaluated.</p></div><div><h3>Conclusion</h3><p>Rg<sub>1</sub> can effectively alleviate cardiomyocytes oxidative stress injury via targeting MAPK1 and ADK, and inhibiting oxidative phosphorylation (OXPHOS) pathway. The present study provides scientific basis for the clinical application of the natural active ingredient, Rg<sub>1</sub>, and also gives rise to a methodological reference to the searching of action targets and pathways of other natural active ingredients.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 4","pages":"Pages 395-404"},"PeriodicalIF":6.8000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845324000332/pdfft?md5=90e961845ce143bd4f1aa7ab841f3369&pid=1-s2.0-S1226845324000332-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ginseng Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226845324000332","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Ginsenoside Rg1 (Rg1) is one of the main active components in Chinese medicines, Panax ginseng and Panax notoginseng. Research has shown that Rg1 has a protective effect on the cardiovascular system, including anti-myocardial ischemia-reperfusion injury, anti-apoptosis, and promotion of myocardial angiogenesis, suggesting it a potential cardiovascular agent. However, the protective mechanism involved is still not fully understood.
Methods
Based on network pharmacology, ligand-based protein docking, proteomics, Western blot, protein recombination and spectroscopic analysis (UV–Vis and fluorescence spectra) techniques, potential targets and pathways for Rg1 against myocardial ischemia (MI) were screened and explored.
Results
An important target set containing 19 proteins was constructed. Two target proteins with more favorable binding activity for Rg1 against MI were further identified by molecular docking, including mitogen-activated protein kinase 1 (MAPK1) and adenosine kinase (ADK). Meanwhile, Rg1 intervention on H9c2 cells injured by H2O2 showed an inhibitory oxidative phosphorylation (OXPHOS) pathway. The inhibition of Rg1 on MAPK1 and OXPHOS pathway was confirmed by Western blot assay. By protein recombination and spectroscopic analysis, the binding reaction between ADK and Rg1 was also evaluated.
Conclusion
Rg1 can effectively alleviate cardiomyocytes oxidative stress injury via targeting MAPK1 and ADK, and inhibiting oxidative phosphorylation (OXPHOS) pathway. The present study provides scientific basis for the clinical application of the natural active ingredient, Rg1, and also gives rise to a methodological reference to the searching of action targets and pathways of other natural active ingredients.
期刊介绍:
Journal of Ginseng Research (JGR) is an official, open access journal of the Korean Society of Ginseng and is the only international journal publishing scholarly reports on ginseng research in the world. The journal is a bimonthly peer-reviewed publication featuring high-quality studies related to basic, pre-clinical, and clinical researches on ginseng to reflect recent progresses in ginseng research.
JGR publishes papers, either experimental or theoretical, that advance our understanding of ginseng science, including plant sciences, biology, chemistry, pharmacology, toxicology, pharmacokinetics, veterinary medicine, biochemistry, manufacture, and clinical study of ginseng since 1976. It also includes the new paradigm of integrative research, covering alternative medicinal approaches. Article types considered for publication include review articles, original research articles, and brief reports.
JGR helps researchers to understand mechanisms for traditional efficacy of ginseng and to put their clinical evidence together. It provides balanced information on basic science and clinical applications to researchers, manufacturers, practitioners, teachers, scholars, and medical doctors.