Xuhui Liu, Wenqiang Xu, Huina Hu, Yan Wu, Pianpian Yan, Bin Xu
{"title":"Parameter design and dynamic stability of controllable damping ferrofluid bearing","authors":"Xuhui Liu, Wenqiang Xu, Huina Hu, Yan Wu, Pianpian Yan, Bin Xu","doi":"10.1002/ls.1701","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to carry out parameter design and dynamic stability verification experiment of controllable damping ferrofluid bearing. A new type of ferrofluid bearings is designed, and its internal magnetic fields are simulated by the finite element analysis software ANSYS. In this paper, the coefficient of magnetic leakage is taken as the optimization object, and the optimal parameters of ferrofluid bearings are updated. At the same time, the working principle of the ferrofluid bearings test platform is introduced, which includes a servomotor with a controller, an eddy displace sensor, an amplifier and a power supply. Finally, the dynamic stability of ferrofluid bearing is verified by experiments. The experimental results show that when the applied current is less than or equal to 0.08 A, the amplitude of the rotor supported by the ferrofluid bearing decreases with the applied current increment. Besides, the dynamic stability of the rotor is also related to the rotational speed. When the applied current is 0.08 A, the amplitude of the rotor supported by the ferrofluid bearing firstly increases and then decreases with the rotational speed increment. It is proved that the ferrofluid bearings have a strong function of the dynamic stability, which can suppress the vibration of the rotor, and have high accuracy of both position and rotation.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"36 5","pages":"396-406"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1701","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this paper is to carry out parameter design and dynamic stability verification experiment of controllable damping ferrofluid bearing. A new type of ferrofluid bearings is designed, and its internal magnetic fields are simulated by the finite element analysis software ANSYS. In this paper, the coefficient of magnetic leakage is taken as the optimization object, and the optimal parameters of ferrofluid bearings are updated. At the same time, the working principle of the ferrofluid bearings test platform is introduced, which includes a servomotor with a controller, an eddy displace sensor, an amplifier and a power supply. Finally, the dynamic stability of ferrofluid bearing is verified by experiments. The experimental results show that when the applied current is less than or equal to 0.08 A, the amplitude of the rotor supported by the ferrofluid bearing decreases with the applied current increment. Besides, the dynamic stability of the rotor is also related to the rotational speed. When the applied current is 0.08 A, the amplitude of the rotor supported by the ferrofluid bearing firstly increases and then decreases with the rotational speed increment. It is proved that the ferrofluid bearings have a strong function of the dynamic stability, which can suppress the vibration of the rotor, and have high accuracy of both position and rotation.
本文旨在对可控阻尼铁流体轴承进行参数设计和动态稳定性验证实验。设计了一种新型铁流体轴承,并利用有限元分析软件 ANSYS 对其内部磁场进行了模拟。本文以漏磁系数为优化对象,更新了铁流体轴承的最优参数。同时,介绍了铁流体轴承测试平台的工作原理,包括带控制器的伺服电机、涡流位移传感器、放大器和电源。最后,通过实验验证了铁流体轴承的动态稳定性。实验结果表明,当外加电流小于或等于 0.08 A 时,由铁流体轴承支撑的转子的振幅会随着外加电流的增大而减小。此外,转子的动态稳定性还与转速有关。当外加电流为 0.08 A 时,铁氟体轴承支撑的转子振幅随着转速的增加先增大后减小。实验证明,铁流体轴承具有很强的动态稳定性,可以抑制转子的振动,位置精度和旋转精度都很高。
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.