BaziGooshi: A Hybrid Model of Reinforcement Learning for Generalization in Gameplay

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sara Karimi;Sahar Asadi;Amir H. Payberah
{"title":"BaziGooshi: A Hybrid Model of Reinforcement Learning for Generalization in Gameplay","authors":"Sara Karimi;Sahar Asadi;Amir H. Payberah","doi":"10.1109/TG.2024.3355172","DOIUrl":null,"url":null,"abstract":"While reinforcement learning (RL) is gaining popularity in gameplay, creating a generalized RL model is still challenging. This study presents \n<sc>BaziGooshi</small>\n, a generalized RL solution for games, focusing on two different types of games: 1) a puzzle game \n<italic>Candy Crush Friends Saga</i>\n and 2) a platform game \n<italic>Sonic the Hedgehog Genesis</i>\n. \n<sc>BaziGooshi</small>\n rewards RL agents for mastering a set of intrinsic basic skills as well as achieving the game objectives. The solution includes a hybrid model that takes advantage of a combination of several agents pretrained using intrinsic or extrinsic rewards to determine the actions. We propose an RL-based method for assigning weights to the pretrained agents. Through experiments, we show that the RL-based approach improves generalization to unseen levels, and \n<sc>BaziGooshi</small>\n surpasses the performance of most of the defined baselines in both games. Also, we perform additional experiments to investigate further the impacts of using intrinsic rewards and the effects of using different combinations in the proposed hybrid models.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 3","pages":"722-734"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10417835/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

While reinforcement learning (RL) is gaining popularity in gameplay, creating a generalized RL model is still challenging. This study presents BaziGooshi , a generalized RL solution for games, focusing on two different types of games: 1) a puzzle game Candy Crush Friends Saga and 2) a platform game Sonic the Hedgehog Genesis . BaziGooshi rewards RL agents for mastering a set of intrinsic basic skills as well as achieving the game objectives. The solution includes a hybrid model that takes advantage of a combination of several agents pretrained using intrinsic or extrinsic rewards to determine the actions. We propose an RL-based method for assigning weights to the pretrained agents. Through experiments, we show that the RL-based approach improves generalization to unseen levels, and BaziGooshi surpasses the performance of most of the defined baselines in both games. Also, we perform additional experiments to investigate further the impacts of using intrinsic rewards and the effects of using different combinations in the proposed hybrid models.
BaziGooshi:游戏泛化的强化学习混合模型
虽然强化学习(RL)在游戏中越来越受欢迎,但创建一个通用的 RL 模型仍然具有挑战性。本研究针对两种不同类型的游戏:1)益智游戏《糖果粉碎朋友传奇》;2)平台游戏《刺猬索尼克:创世纪》,提出了一种适用于游戏的通用强化学习解决方案--BaziGooshi。BaziGooshi 对掌握一系列内在基本技能和实现游戏目标的 RL 代理进行奖励。该解决方案包括一个混合模型,该模型综合利用了多个使用内在或外在奖励进行预训练的代理来决定行动。我们提出了一种基于 RL 的方法,用于为预先训练好的代理分配权重。通过实验,我们发现基于 RL 的方法提高了对未知水平的泛化能力,BaziGooshi 在两个游戏中的表现都超过了大多数已定义基线的表现。此外,我们还进行了其他实验,以进一步研究在所提出的混合模型中使用内在奖励的影响和使用不同组合的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信