The structure of digraphs with excess one

Pub Date : 2024-02-19 DOI:10.1002/jgt.23082
James Tuite
{"title":"The structure of digraphs with excess one","authors":"James Tuite","doi":"10.1002/jgt.23082","DOIUrl":null,"url":null,"abstract":"<p>A digraph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-<i>geodetic</i> if for any (not necessarily distinct) vertices <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>,</mo>\n <mi>v</mi>\n </mrow>\n <annotation> $u,v$</annotation>\n </semantics></math> there is at most one directed walk from <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n </mrow>\n <annotation> $u$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> with length not exceeding <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>. The order of a <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-geodetic digraph with minimum out-degree <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math> is bounded below by the directed Moore bound <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>d</mi>\n <mo>,</mo>\n <mi>k</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>d</mi>\n <mo>+</mo>\n <msup>\n <mi>d</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mi>⋯</mi>\n <mo>+</mo>\n <msup>\n <mi>d</mi>\n <mi>k</mi>\n </msup>\n </mrow>\n <annotation> $M(d,k)=1+d+{d}^{2}+\\cdots +{d}^{k}$</annotation>\n </semantics></math>. The Moore bound can be met only in the trivial cases <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $d=1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $k=1$</annotation>\n </semantics></math>, so it is of interest to look for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-geodetic digraphs with out-degree <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math> and smallest possible order <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>d</mi>\n <mo>,</mo>\n <mi>k</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <mo>ϵ</mo>\n </mrow>\n <annotation> $M(d,k)+{\\epsilon }$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mo>ϵ</mo>\n </mrow>\n <annotation> ${\\epsilon }$</annotation>\n </semantics></math> is the <i>excess</i> of the digraph. Miller, Miret and Sillasen recently ruled out the existence of digraphs with excess one for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $k=3,4$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $d\\ge 2$</annotation>\n </semantics></math> and for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $k=2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>≥</mo>\n <mn>8</mn>\n </mrow>\n <annotation> $d\\ge 8$</annotation>\n </semantics></math>. We conjecture that there are no digraphs with excess one for <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $d,k\\ge 2$</annotation>\n </semantics></math> and in this paper we investigate the structure of minimal counterexamples to this conjecture. We severely constrain the possible structures of the outlier function and prove the nonexistence of certain digraphs with degree three and excess one, as well closing the open cases <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $k=2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mn>4</mn>\n <mo>,</mo>\n <mn>5</mn>\n <mo>,</mo>\n <mn>6</mn>\n <mo>,</mo>\n <mn>7</mn>\n </mrow>\n <annotation> $d=3,4,5,6,7$</annotation>\n </semantics></math> left by the analysis of Miller et al. We further show that there are no involutary digraphs with excess one, that is, the outlier function of any such digraph must contain a cycle of length <span></span><math>\n <semantics>\n <mrow>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $\\ge 3$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23082","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A digraph G $G$ is k $k$ -geodetic if for any (not necessarily distinct) vertices u , v $u,v$ there is at most one directed walk from u $u$ to v $v$ with length not exceeding k $k$ . The order of a k $k$ -geodetic digraph with minimum out-degree d $d$ is bounded below by the directed Moore bound M ( d , k ) = 1 + d + d 2 + + d k $M(d,k)=1+d+{d}^{2}+\cdots +{d}^{k}$ . The Moore bound can be met only in the trivial cases d = 1 $d=1$ and k = 1 $k=1$ , so it is of interest to look for k $k$ -geodetic digraphs with out-degree d $d$ and smallest possible order M ( d , k ) + ϵ $M(d,k)+{\epsilon }$ , where ϵ ${\epsilon }$ is the excess of the digraph. Miller, Miret and Sillasen recently ruled out the existence of digraphs with excess one for k = 3 , 4 $k=3,4$ and d 2 $d\ge 2$ and for k = 2 $k=2$ and d 8 $d\ge 8$ . We conjecture that there are no digraphs with excess one for d , k 2 $d,k\ge 2$ and in this paper we investigate the structure of minimal counterexamples to this conjecture. We severely constrain the possible structures of the outlier function and prove the nonexistence of certain digraphs with degree three and excess one, as well closing the open cases k = 2 $k=2$ and d = 3 , 4 , 5 , 6 , 7 $d=3,4,5,6,7$ left by the analysis of Miller et al. We further show that there are no involutary digraphs with excess one, that is, the outlier function of any such digraph must contain a cycle of length 3 $\ge 3$ .

Abstract Image

分享
查看原文
多一数图的结构
如果对于任何(不一定不同的)顶点,从 到 的有向行走最多只有一次,且长度不超过 .具有最小外度的有向有序数图的阶数受有向摩尔约束的约束。摩尔约束只有在琐碎的情况下才能满足,因此我们有兴趣寻找具有外度和最小可能阶数的-大地数字图,其中阶数是数字图的过量。米勒(Miller)、米雷特(Miret)和西拉森(Sillasen)最近排除了在 和 时存在过量为 1 的图的可能性。我们猜想,在本文中,我们将研究这一猜想的最小反例的结构。我们严格限制了离群函数的可能结构,并证明了某些阶数为三且多余度为一的图的不存在性,以及米勒等人的分析所留下的开放情况和的关闭情况。我们进一步证明了不存在多余度为一的渐开线图,也就是说,任何此类图的离群函数必须包含一个长度为 的循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信