An 80–84.8 GHz PLL with auto-tracking Miller divider for FMCW applications

IF 1.2 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Popong Effendrik, Wei-Zen Chen
{"title":"An 80–84.8 GHz PLL with auto-tracking Miller divider for FMCW applications","authors":"Popong Effendrik,&nbsp;Wei-Zen Chen","doi":"10.1007/s10470-024-02258-z","DOIUrl":null,"url":null,"abstract":"<div><p>To generate high frequency signals for frequency modulated continuous wave (FMCW) application, components such as doubler, tripler or multiplier are usually utilized to process further signals from the low frequency voltage controlled oscillator (VCO). In this paper, a phase-locked loop (PLL) is intended to be the primary part used to generate frequency modulated continuous wave (FMCW) signals from 80 to 84.8 GHz by utilizing a fundamental frequency VCO. To divide those high frequency output signal and large output bandwidth, the auto-tracking Miller divider topology is proposed. This new topology can achieve 9 GHz locking range. In order to generate FMCW signals with a straight-line triangular chirp, the cascaded PLL is used. The integrated jitter from 1 kHz to 1 GHz is 887 fs for the cascaded PLL, while the single stage PLL used 1.264 ps. Moreover, when architecture with doubler or multiplier is used, the fundamental tone has an effect towards the next systems, while the cascaded PLL does not. It can be highlighted that this work achieves the best RMS-FM<sub>error</sub>/BW<sub>chirp</sub> and RMS-FM<sub>error</sub>/(BW<sub>chirp</sub> × f<sub>c</sub> × T<sub>c</sub>) with value of 0.013% and 0.77e−12<b>,</b> respectively. The designed PLL for FMCW signal generator is implemented in 28 nm CMOS technology. By using a supply voltage of 1.2 V, the chip consumes power of 102 mW. Including all the chip pads, the implemented circuit occupies a silicon area of 1440 µm × 820 µm.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10470-024-02258-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-024-02258-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

To generate high frequency signals for frequency modulated continuous wave (FMCW) application, components such as doubler, tripler or multiplier are usually utilized to process further signals from the low frequency voltage controlled oscillator (VCO). In this paper, a phase-locked loop (PLL) is intended to be the primary part used to generate frequency modulated continuous wave (FMCW) signals from 80 to 84.8 GHz by utilizing a fundamental frequency VCO. To divide those high frequency output signal and large output bandwidth, the auto-tracking Miller divider topology is proposed. This new topology can achieve 9 GHz locking range. In order to generate FMCW signals with a straight-line triangular chirp, the cascaded PLL is used. The integrated jitter from 1 kHz to 1 GHz is 887 fs for the cascaded PLL, while the single stage PLL used 1.264 ps. Moreover, when architecture with doubler or multiplier is used, the fundamental tone has an effect towards the next systems, while the cascaded PLL does not. It can be highlighted that this work achieves the best RMS-FMerror/BWchirp and RMS-FMerror/(BWchirp × fc × Tc) with value of 0.013% and 0.77e−12, respectively. The designed PLL for FMCW signal generator is implemented in 28 nm CMOS technology. By using a supply voltage of 1.2 V, the chip consumes power of 102 mW. Including all the chip pads, the implemented circuit occupies a silicon area of 1440 µm × 820 µm.

Abstract Image

用于 FMCW 应用的 80-84.8 GHz PLL,带自动跟踪米勒分频器
要为频率调制连续波(FMCW)应用生成高频信号,通常需要使用倍频器、三倍频器或乘法器等元件来进一步处理来自低频压控振荡器(VCO)的信号。在本文中,锁相环(PLL)是利用基频压控振荡器产生 80 至 84.8 GHz 频率调制连续波(FMCW)信号的主要部件。为了分频这些高频输出信号和大输出带宽,提出了自动跟踪米勒分频器拓扑结构。这种新型拓扑结构可实现 9 GHz 的锁定范围。为了产生具有直线三角啁啾的 FMCW 信号,使用了级联 PLL。级联 PLL 从 1 kHz 到 1 GHz 的综合抖动为 887 fs,而单级 PLL 为 1.264 ps。此外,当使用带倍增器或乘法器的结构时,基音会对下一个系统产生影响,而级联 PLL 则不会。可以强调的是,这项工作实现了最佳的 RMS-FMerror/BWchirp 和 RMS-FMerror/(BWchirp × fc × Tc),其值分别为 0.013% 和 0.77e-12。为 FMCW 信号发生器设计的 PLL 采用 28 纳米 CMOS 技术实现。使用 1.2 V 电源电压时,芯片功耗为 102 mW。包括所有芯片焊盘在内,所实现的电路占硅面积为 1440 µm × 820 µm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信