Luan dos Santos Menezes, Daniel Navarro da Rocha, Renato Carajelescov Nonato, Ana Rosa Costa, Ana Rita Morales, Lourenço Correr-Sobrinho, Américo Bortolazzo Correr, José Guilherme Neves
{"title":"Cellulose acetate scaffold containing hydroxyapatite/graphene oxide nanocomposite by electrospinning for advanced regenerative therapies","authors":"Luan dos Santos Menezes, Daniel Navarro da Rocha, Renato Carajelescov Nonato, Ana Rosa Costa, Ana Rita Morales, Lourenço Correr-Sobrinho, Américo Bortolazzo Correr, José Guilherme Neves","doi":"10.1177/08839115241233345","DOIUrl":null,"url":null,"abstract":"The aim of this study was to synthesize and characterize Cellulose Acetate (CA) porous scaffolds using the electrospinning technique associated with Hydroxyapatite (HA) and different concentrations of graphene oxide (GO), for advanced regenerative therapies application. The scaffolds were categorized into four distinct groups based on their composition: (1) Pure CA scaffolds; (2) CAHA scaffolds; (3) CAHAGO 1.0% scaffolds; (4) CAHAGO 1.5% scaffolds. Transmission Electron Microscopy (TEM) was used for the characterization of the nanocomposite. The scaffolds were analyzed by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS), and in vitro cell viability assays (WST). For the biological test analysis of Variance (two-way) was used, followed by Tukey’s post-test (α = 0.05). The TEM analysis allowed for the visualization of the deposition of HA on the graphene sheets, confirming the synthesis of the nanocomposite. XRD revealed the predominant presence of CaP phases in the CAHA, CAHAGO 1.0%, and CAHAGO 1.5% groups, underscoring the inherent mineral composition of the scaffolds. FTIR demonstrated cellulose characteristics and PO<jats:sub>4</jats:sub> bands in the groups containing HA, confirming the effective incorporation of this material. Raman spectroscopy revealed distinct peaks in the GO groups, conclusively verifying the successful integration of graphene into the scaffold matrix. The micrographs showcased irregular pores filling the entire surface, arising from the intricate overlapping of fibers during scaffold formation. Importantly, all scaffolds exhibited excellent cell viability in the conducted assays. A proliferation process was observed in CAHA and CAHAGO 1.5% groups after 48 h ( p < 0.05). In conclusion, the scaffolds synthesized hold significant promise in the realm of tissue engineering and provide a fresh perspective on the possibilities for regenerative therapies.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"4 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115241233345","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to synthesize and characterize Cellulose Acetate (CA) porous scaffolds using the electrospinning technique associated with Hydroxyapatite (HA) and different concentrations of graphene oxide (GO), for advanced regenerative therapies application. The scaffolds were categorized into four distinct groups based on their composition: (1) Pure CA scaffolds; (2) CAHA scaffolds; (3) CAHAGO 1.0% scaffolds; (4) CAHAGO 1.5% scaffolds. Transmission Electron Microscopy (TEM) was used for the characterization of the nanocomposite. The scaffolds were analyzed by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS), and in vitro cell viability assays (WST). For the biological test analysis of Variance (two-way) was used, followed by Tukey’s post-test (α = 0.05). The TEM analysis allowed for the visualization of the deposition of HA on the graphene sheets, confirming the synthesis of the nanocomposite. XRD revealed the predominant presence of CaP phases in the CAHA, CAHAGO 1.0%, and CAHAGO 1.5% groups, underscoring the inherent mineral composition of the scaffolds. FTIR demonstrated cellulose characteristics and PO4 bands in the groups containing HA, confirming the effective incorporation of this material. Raman spectroscopy revealed distinct peaks in the GO groups, conclusively verifying the successful integration of graphene into the scaffold matrix. The micrographs showcased irregular pores filling the entire surface, arising from the intricate overlapping of fibers during scaffold formation. Importantly, all scaffolds exhibited excellent cell viability in the conducted assays. A proliferation process was observed in CAHA and CAHAGO 1.5% groups after 48 h ( p < 0.05). In conclusion, the scaffolds synthesized hold significant promise in the realm of tissue engineering and provide a fresh perspective on the possibilities for regenerative therapies.
期刊介绍:
The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).