Amy L. Brooks;Prateek Shekhar;Jeffrey Knowles;Elliott Clement;Shane A. Brown
{"title":"Contextual Influences on the Adoption of Evidence-Based Instructional Practices by Electrical and Computer Engineering Faculty","authors":"Amy L. Brooks;Prateek Shekhar;Jeffrey Knowles;Elliott Clement;Shane A. Brown","doi":"10.1109/TE.2023.3338479","DOIUrl":null,"url":null,"abstract":"Contribution: This study aimed to improve understanding of context-based affordances and barriers to adoption of evidence-based instructional practices (EBIPs) among faculty in electrical and computer engineering (ECE). Context-based influences, including motives, constraints, and feedback mechanisms impacting EBIP adoption across six ECE faculty participants were documented using qualitative analysis. Background: Recent engineering education literature notes that the adoption of EBIPs by engineering faculty is lagging despite increased faculty awareness of EBIPs, belief in their effectiveness, and interest in integrating them. While researchers continue to investigate barriers to faculty adoption of EBIPs in science, technology, engineering, and mathematics education settings, few studies have dedicated examinations within a specific disciplinary context, particularly among ECE faculty members. Research Question: What context-based barriers and affordances influence adoption of EBIPs by ECE faculty members? Methodology: This study qualitatively analyzed data from in-depth interviews with six ECE faculty members from engineering programs throughout the United States. The study applied an iterative combination of case study and thematic analysis techniques to identify context-relevant and unique factors relevant to each individual participant and synthesize the process of decision making when incorporating EBIPs using a systems perspective. Findings: Overall, the approach identified drivers, constraints, and feedback mechanisms in regard to four emergent categories of EBIP adoption cases: 1) no use; 2) discontinued use; 3) in development; and 4) continued use. The study reports examples of context-based influences among the six participants in relation to their level of EBIP adoption, highlighting the substantial variation in faculty experiences with incorporating EBIPs.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10400397/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Contribution: This study aimed to improve understanding of context-based affordances and barriers to adoption of evidence-based instructional practices (EBIPs) among faculty in electrical and computer engineering (ECE). Context-based influences, including motives, constraints, and feedback mechanisms impacting EBIP adoption across six ECE faculty participants were documented using qualitative analysis. Background: Recent engineering education literature notes that the adoption of EBIPs by engineering faculty is lagging despite increased faculty awareness of EBIPs, belief in their effectiveness, and interest in integrating them. While researchers continue to investigate barriers to faculty adoption of EBIPs in science, technology, engineering, and mathematics education settings, few studies have dedicated examinations within a specific disciplinary context, particularly among ECE faculty members. Research Question: What context-based barriers and affordances influence adoption of EBIPs by ECE faculty members? Methodology: This study qualitatively analyzed data from in-depth interviews with six ECE faculty members from engineering programs throughout the United States. The study applied an iterative combination of case study and thematic analysis techniques to identify context-relevant and unique factors relevant to each individual participant and synthesize the process of decision making when incorporating EBIPs using a systems perspective. Findings: Overall, the approach identified drivers, constraints, and feedback mechanisms in regard to four emergent categories of EBIP adoption cases: 1) no use; 2) discontinued use; 3) in development; and 4) continued use. The study reports examples of context-based influences among the six participants in relation to their level of EBIP adoption, highlighting the substantial variation in faculty experiences with incorporating EBIPs.