Silicon-Based Suspended Microchannel Resonator Developed Using Au Thermal Diffusion Bonding for Mass Sensing of Biomaterials

IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Keita Funayama;Atsushi Miura;Fumihito Arai;Hiroya Tanaka
{"title":"Silicon-Based Suspended Microchannel Resonator Developed Using Au Thermal Diffusion Bonding for Mass Sensing of Biomaterials","authors":"Keita Funayama;Atsushi Miura;Fumihito Arai;Hiroya Tanaka","doi":"10.1109/JMEMS.2024.3352835","DOIUrl":null,"url":null,"abstract":"Suspended microchannels are of great interest in applications such as physical and chemical sensor systems. In this study, we developed a suspended microchannel resonator (SMR) by bonding two separate Au-coated silicon–insulator–silicon substrates via thermal diffusion bonding. To obtain a secure bond between Au films, we investigated different bonding temperatures and Au film thicknesses. As a result, we successfully fabricated an SMR. We show that the developed resonator has a resonance frequency of 229.55 kHz and a quality factor of 171 for the empty channel. The response of the channel to absolute mass was 18.7 pg/Hz. The measurement results were in good agreement with the results of numerical simulations. In addition, we estimated the practical mass detectability of the developed SMR via statistical analysis. The developed SMR enabled mass detection with a resolution of 710.6 pg. Our SMR can be produced via typical semiconductor fabrication technology, which is advantageous in terms of mass production. [2023-0164]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10411500","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10411500/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Suspended microchannels are of great interest in applications such as physical and chemical sensor systems. In this study, we developed a suspended microchannel resonator (SMR) by bonding two separate Au-coated silicon–insulator–silicon substrates via thermal diffusion bonding. To obtain a secure bond between Au films, we investigated different bonding temperatures and Au film thicknesses. As a result, we successfully fabricated an SMR. We show that the developed resonator has a resonance frequency of 229.55 kHz and a quality factor of 171 for the empty channel. The response of the channel to absolute mass was 18.7 pg/Hz. The measurement results were in good agreement with the results of numerical simulations. In addition, we estimated the practical mass detectability of the developed SMR via statistical analysis. The developed SMR enabled mass detection with a resolution of 710.6 pg. Our SMR can be produced via typical semiconductor fabrication technology, which is advantageous in terms of mass production. [2023-0164]
利用金热扩散键合技术开发的硅基悬浮微通道谐振器用于生物材料的质量传感
悬浮微通道在物理和化学传感器系统等应用中具有重大意义。在这项研究中,我们通过热扩散键合技术将两个独立的金涂层硅-绝缘体-硅衬底粘合在一起,开发出了悬浮微通道谐振器(SMR)。为了获得金膜之间的牢固结合,我们研究了不同的结合温度和金膜厚度。结果,我们成功地制造出了 SMR。我们的研究表明,所开发的谐振器共振频率为 229.55 kHz,空通道的品质因数为 171。通道对绝对质量的响应为 18.7 pg/Hz。测量结果与数值模拟结果十分吻合。此外,我们还通过统计分析估算了所开发的 SMR 的实际质量检测能力。所开发的 SMR 的质量检测分辨率为 710.6 pg。我们的 SMR 可以通过典型的半导体制造技术生产,在大规模生产方面具有优势。[2023-0164]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Microelectromechanical Systems
Journal of Microelectromechanical Systems 工程技术-工程:电子与电气
CiteScore
6.20
自引率
7.40%
发文量
115
审稿时长
7.5 months
期刊介绍: The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信