{"title":"Applications of Yttrium-90 (90Y) in Hepatocellular Carcinoma","authors":"ZhongHao Jiang, Fan Yang, WanXiang Wang","doi":"10.2147/ott.s445898","DOIUrl":null,"url":null,"abstract":"<strong>Abstract:</strong> Hepatocellular carcinoma (HCC) is the most common primary liver cancer, affecting millions of people worldwide. Due to the lack of systemic radiation therapy in hepatocellular carcinoma, researchers have been investigating the use of yttrium-90 (<sup>90</sup>Y) radioembolization for local-regional tumor control since the 1960s. With the development of glass and resin <sup>90</sup>Y microspheres and the durable local control, good long-term efficacy, and equivalent tumor responsiveness and tolerability of <sup>90</sup>Y-selective internal irradiation compared with alternative therapies such as transarterial chemoembolization (TACE) and sorafenib, <sup>90</sup>Y radioembolization has gradually been applied in the treatment of hepatocellular carcinoma of all stages. In this article, we summarize the latest progress of <sup>90</sup>Y in the treatment of hepatocellular carcinoma in terms of its principle, advantages, indications, contraindications, efficacy and adverse effects.<br/><br/><strong>Keywords:</strong> yttrium-90, hepatocellular carcinoma, internal radioembolisation<br/>","PeriodicalId":19534,"journal":{"name":"OncoTargets and therapy","volume":"32 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OncoTargets and therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/ott.s445898","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Hepatocellular carcinoma (HCC) is the most common primary liver cancer, affecting millions of people worldwide. Due to the lack of systemic radiation therapy in hepatocellular carcinoma, researchers have been investigating the use of yttrium-90 (90Y) radioembolization for local-regional tumor control since the 1960s. With the development of glass and resin 90Y microspheres and the durable local control, good long-term efficacy, and equivalent tumor responsiveness and tolerability of 90Y-selective internal irradiation compared with alternative therapies such as transarterial chemoembolization (TACE) and sorafenib, 90Y radioembolization has gradually been applied in the treatment of hepatocellular carcinoma of all stages. In this article, we summarize the latest progress of 90Y in the treatment of hepatocellular carcinoma in terms of its principle, advantages, indications, contraindications, efficacy and adverse effects.
期刊介绍:
OncoTargets and Therapy is an international, peer-reviewed journal focusing on molecular aspects of cancer research, that is, the molecular diagnosis of and targeted molecular or precision therapy for all types of cancer.
The journal is characterized by the rapid reporting of high-quality original research, basic science, reviews and evaluations, expert opinion and commentary that shed novel insight on a cancer or cancer subtype.
Specific topics covered by the journal include:
-Novel therapeutic targets and innovative agents
-Novel therapeutic regimens for improved benefit and/or decreased side effects
-Early stage clinical trials
Further considerations when submitting to OncoTargets and Therapy:
-Studies containing in vivo animal model data will be considered favorably.
-Tissue microarray analyses will not be considered except in cases where they are supported by comprehensive biological studies involving multiple cell lines.
-Biomarker association studies will be considered only when validated by comprehensive in vitro data and analysis of human tissue samples.
-Studies utilizing publicly available data (e.g. GWAS/TCGA/GEO etc.) should add to the body of knowledge about a specific disease or relevant phenotype and must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Bioinformatics studies must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Single nucleotide polymorphism (SNP) studies will not be considered.