Adaptive Task Migration in Multiplex Networked Industrial Chains

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Kai Di;Fulin Chen;Yuanshuang Jiang;Pan Li;Tianyi Liu;Yichuan Jiang
{"title":"Adaptive Task Migration in Multiplex Networked Industrial Chains","authors":"Kai Di;Fulin Chen;Yuanshuang Jiang;Pan Li;Tianyi Liu;Yichuan Jiang","doi":"10.1109/TETC.2024.3364703","DOIUrl":null,"url":null,"abstract":"In recent years, the cooperation structures of industrial chains have evolved into multiplex networks, in which product agents are connected through various types of links. Due to the constraints of the multi-coupled interaction structure of the multiplex networked industrial chains, the load imbalances generated by the industrial production processes will cascade in and between different network layers, thus affecting the load balance of the whole system. The challenges that arise when attempting such load balancing among multiplex networked industrial chains are twofold: 1) The multiplex networked interaction structure adds new constraints to traditional multiagent task migration problems, which increases the solution space dimension, and 2) The cascaded load imbalances require tasks to be migrated adaptively, which complicates the solution space structure, and it is proven \n<inline-formula><tex-math>$\\mathcal {NP}$</tex-math></inline-formula>\n-hard to achieve such load balancing. Then, a hierarchical cascade-triggered task migration algorithm is designed, where key agents are selected to cooperate with each other in a hierarchical control form to achieve load balancing between network layers, and appropriate agents are cascade-triggered to migrate tasks adaptively to achieve load balancing in network layers. Finally, the algorithm is extensively evaluated in experiments, concluding that it can significantly increase the resulting utility and task completion proportion, while efficiently reducing the task completion cost. In particular, the algorithm does not appear to be statistically different in the resulting optimization objectives from the optimal result computed by the CPLEX solver, but it may consume less runtime.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 4","pages":"1025-1039"},"PeriodicalIF":5.1000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10439023/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the cooperation structures of industrial chains have evolved into multiplex networks, in which product agents are connected through various types of links. Due to the constraints of the multi-coupled interaction structure of the multiplex networked industrial chains, the load imbalances generated by the industrial production processes will cascade in and between different network layers, thus affecting the load balance of the whole system. The challenges that arise when attempting such load balancing among multiplex networked industrial chains are twofold: 1) The multiplex networked interaction structure adds new constraints to traditional multiagent task migration problems, which increases the solution space dimension, and 2) The cascaded load imbalances require tasks to be migrated adaptively, which complicates the solution space structure, and it is proven $\mathcal {NP}$ -hard to achieve such load balancing. Then, a hierarchical cascade-triggered task migration algorithm is designed, where key agents are selected to cooperate with each other in a hierarchical control form to achieve load balancing between network layers, and appropriate agents are cascade-triggered to migrate tasks adaptively to achieve load balancing in network layers. Finally, the algorithm is extensively evaluated in experiments, concluding that it can significantly increase the resulting utility and task completion proportion, while efficiently reducing the task completion cost. In particular, the algorithm does not appear to be statistically different in the resulting optimization objectives from the optimal result computed by the CPLEX solver, but it may consume less runtime.
多路复用网络产业链中的自适应任务迁移
近年来,产业链的合作结构已经演变为多元化的网络,产品代理商通过各种类型的环节连接在一起。由于多路网络化产业链的多耦合交互结构的约束,工业生产过程产生的负载不平衡会在不同的网络层内和网络层之间层叠产生,从而影响整个系统的负载平衡。在多路联网产业链之间尝试这种负载平衡时面临的挑战有两个:1)多路联网交互结构给传统的多智能体任务迁移问题增加了新的约束,增加了求解空间维度;2)级联负载不平衡要求任务自适应迁移,使求解空间结构复杂化,并且证明了这种负载平衡很难实现。然后,设计了一种分层级联触发任务迁移算法,选择关键代理以分层控制的形式相互协作,实现网络层间的负载均衡,并通过级联触发适当的代理自适应迁移任务,实现网络层间的负载均衡。最后,在实验中对该算法进行了广泛的评估,结果表明该算法可以显著提高结果的效用和任务完成率,同时有效地降低任务完成成本。特别是,该算法在最终优化目标上与CPLEX求解器计算的最优结果在统计上似乎没有差异,但它可能消耗更少的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Emerging Topics in Computing
IEEE Transactions on Emerging Topics in Computing Computer Science-Computer Science (miscellaneous)
CiteScore
12.10
自引率
5.10%
发文量
113
期刊介绍: IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信