Baohua Wang, Yuchen Sun, Jiacheng Zhang, Weilong Wang
{"title":"A Motion Decoupling Control Based on Differential Geometry for Distributed Drive Articulated Heavy Vehicle","authors":"Baohua Wang, Yuchen Sun, Jiacheng Zhang, Weilong Wang","doi":"10.1007/s12239-024-00032-8","DOIUrl":null,"url":null,"abstract":"<p>A vehicle system motion decoupling control method was proposed to address challenges in controlling articulated heavy vehicles (AHVs). The method, based on differential geometry theory, focused on distributed electric drive AHVs. Its objective was to separate the highly nonlinear and strongly coupled dynamics system into two relatively independent subsystems: longitudinal and lateral motions. Additionally, a robust controller was designed to improve the vehicle’s resistance to external disturbances like side winds. Simulation tests using a TruckSim model of a distributed electric drive AHV show significant improvements compared to vehicles without decoupling control. The rearward amplification (RA) is reduced by 4.5%, the longitudinal velocity deviation by 67.5%, and the yaw rate deviation by 69.7%. The vehicle also demonstrates enhanced stability when subjected to strong breeze disturbances. To validate the control performance in real-time systems, the hardware-in-the-loop tests were conducted, which confirms the effectiveness of the proposed control approach in practical applications.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00032-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A vehicle system motion decoupling control method was proposed to address challenges in controlling articulated heavy vehicles (AHVs). The method, based on differential geometry theory, focused on distributed electric drive AHVs. Its objective was to separate the highly nonlinear and strongly coupled dynamics system into two relatively independent subsystems: longitudinal and lateral motions. Additionally, a robust controller was designed to improve the vehicle’s resistance to external disturbances like side winds. Simulation tests using a TruckSim model of a distributed electric drive AHV show significant improvements compared to vehicles without decoupling control. The rearward amplification (RA) is reduced by 4.5%, the longitudinal velocity deviation by 67.5%, and the yaw rate deviation by 69.7%. The vehicle also demonstrates enhanced stability when subjected to strong breeze disturbances. To validate the control performance in real-time systems, the hardware-in-the-loop tests were conducted, which confirms the effectiveness of the proposed control approach in practical applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.