A numerical study of ignition and flame development characteristics in GCI combustion using large eddy simulations and chemical explosive mode analysis

IF 2.2 4区 工程技术 Q2 ENGINEERING, MECHANICAL
Yuanyuan Zhao, Chao Xu, Yan Zhang, Zongyu Yue, Chenchen Wang, Zhenyang Ming, Yuqing Cai, Zunqing Zheng, Hu Wang, Mingfa Yao
{"title":"A numerical study of ignition and flame development characteristics in GCI combustion using large eddy simulations and chemical explosive mode analysis","authors":"Yuanyuan Zhao, Chao Xu, Yan Zhang, Zongyu Yue, Chenchen Wang, Zhenyang Ming, Yuqing Cai, Zunqing Zheng, Hu Wang, Mingfa Yao","doi":"10.1177/14680874241227536","DOIUrl":null,"url":null,"abstract":"This work investigates the ignition and flame development processes of low reactivity fuel combustion under compression ignition conditions based on the large eddy simulation approach. The chemical explosive mode analysis (CEMA) is employed to characterize the local combustion features, including gas-liquid fuel zone, auto-ignition, diffusion-assisted, extinction, cool flame and post-ignition zone, among which auto-ignition and post-ignition are found to play a key role in the overall heat release process. The local flame propagation modes in gasoline compression ignition (GCI) are determined by quantifying the relative magnitude of diffusion/chemistry at a representative progress variable in the pre-ignition zone. The results show that autoignition fronts and deflagration waves exist simultaneously in the ignition and intense high temperature heat release (HTHR) stages, but autoignition fronts dominate. In addition, the chemical kinetic processes of four heat release periods are analyzed. The heat release during the ignition period is found to be dominated by the reactions CH<jats:sub>3</jats:sub>+ H (+M) &lt;=&gt; CH<jats:sub>4</jats:sub> (+M) and CH<jats:sub>3</jats:sub>CHO + H &lt;=&gt; CH<jats:sub>2</jats:sub>CHO + H<jats:sub>2</jats:sub>. The reaction CH<jats:sub>2</jats:sub>OH + OH &lt;=&gt; CH<jats:sub>2</jats:sub>O + H<jats:sub>2</jats:sub>O always plays an important role in the heat releases during the other three combustion stages including intense HTHR, moderate HTHR and post-combustion.","PeriodicalId":14034,"journal":{"name":"International Journal of Engine Research","volume":"174 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engine Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14680874241227536","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the ignition and flame development processes of low reactivity fuel combustion under compression ignition conditions based on the large eddy simulation approach. The chemical explosive mode analysis (CEMA) is employed to characterize the local combustion features, including gas-liquid fuel zone, auto-ignition, diffusion-assisted, extinction, cool flame and post-ignition zone, among which auto-ignition and post-ignition are found to play a key role in the overall heat release process. The local flame propagation modes in gasoline compression ignition (GCI) are determined by quantifying the relative magnitude of diffusion/chemistry at a representative progress variable in the pre-ignition zone. The results show that autoignition fronts and deflagration waves exist simultaneously in the ignition and intense high temperature heat release (HTHR) stages, but autoignition fronts dominate. In addition, the chemical kinetic processes of four heat release periods are analyzed. The heat release during the ignition period is found to be dominated by the reactions CH3+ H (+M) <=> CH4 (+M) and CH3CHO + H <=> CH2CHO + H2. The reaction CH2OH + OH <=> CH2O + H2O always plays an important role in the heat releases during the other three combustion stages including intense HTHR, moderate HTHR and post-combustion.
利用大涡模拟和化学爆炸模式分析对 GCI 燃烧中的点火和火焰发展特征进行数值研究
本研究基于大涡模拟方法,研究了压缩点火条件下低反应性燃料燃烧的点火和火焰发展过程。采用化学爆炸模式分析(CEMA)表征了局部燃烧特征,包括气液燃料区、自燃区、扩散辅助区、熄灭区、冷焰区和后燃区,其中发现自燃和后燃对整个热释放过程起着关键作用。汽油压缩点火(GCI)中的局部火焰传播模式是通过量化点火前区代表性进展变量处的扩散/化学相对大小来确定的。结果表明,在点火和强烈高温放热(HTHR)阶段,自燃前沿和爆燃波同时存在,但自燃前沿占主导地位。此外,还分析了四个放热期的化学动力学过程。研究发现,点火期的放热反应主要是 CH3+ H (+M) <=> CH4 (+M) 和 CH3CHO + H <=> CH2CHO + H2。反应 CH2OH + OH <=> CH2O + H2O 在其他三个燃烧阶段(包括强 HTHR、中 HTHR 和后燃烧)的热量释放中始终起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Engine Research
International Journal of Engine Research 工程技术-工程:机械
CiteScore
6.50
自引率
16.00%
发文量
130
审稿时长
>12 weeks
期刊介绍: The International Journal of Engine Research publishes high quality papers on experimental and analytical studies of engine technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信