{"title":"Vitamin D status alters genes involved in ovarian steroidogenesis in muskrat granulosa cells","authors":"Wenjing Lu, Yuan Chen, María Daniela Artigas Ramírez, Yuning Liu, Haolin Zhang, Zhengrong Yuan, Yingying Han, Qiang Weng","doi":"10.1016/j.bbalip.2024.159469","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to explore the relationship between altered vitamin D (VitD<sub>3</sub>) status and ovarian steroidogenesis in muskrats during the breeding and non-breeding seasons. During the breeding season, the ovaries of muskrats were observably enlarged and increased in weight, accompanied by elevated serum and ovarian VitD<sub>3</sub> status. Vitamin D receptor (VDR), VitD<sub>3</sub> metabolic molecules (CYP2R1, CYP27B1, and CYP24A1), and steroidogenic enzymes were immunolocalized in the ovarian cells of muskrats. The mRNA levels of <em>VDR</em>, <em>CYP2R1</em>, <em>CYP27B1</em>, and steroidogenic enzymes were considerably higher during the breeding season compared to the non-breeding season. RNA-seq analysis revealed a prominent enrichment of vitamin-related and ovarian steroidogenesis pathways. Furthermore, the addition of 1,25(OH)<sub>2</sub>D<sub>3</sub> to the muskrat granulosa cells <em>in vitro</em> increased VDR and steroidogenic enzymes mRNA levels and enhanced the 17β-estradiol level. Overall, these findings supported that VitD<sub>3</sub> promotes the secretion of steroid hormones, thereby affecting seasonal changes in ovarian function in the muskrats.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 4","pages":"Article 159469"},"PeriodicalIF":3.9000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198124000192","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to explore the relationship between altered vitamin D (VitD3) status and ovarian steroidogenesis in muskrats during the breeding and non-breeding seasons. During the breeding season, the ovaries of muskrats were observably enlarged and increased in weight, accompanied by elevated serum and ovarian VitD3 status. Vitamin D receptor (VDR), VitD3 metabolic molecules (CYP2R1, CYP27B1, and CYP24A1), and steroidogenic enzymes were immunolocalized in the ovarian cells of muskrats. The mRNA levels of VDR, CYP2R1, CYP27B1, and steroidogenic enzymes were considerably higher during the breeding season compared to the non-breeding season. RNA-seq analysis revealed a prominent enrichment of vitamin-related and ovarian steroidogenesis pathways. Furthermore, the addition of 1,25(OH)2D3 to the muskrat granulosa cells in vitro increased VDR and steroidogenic enzymes mRNA levels and enhanced the 17β-estradiol level. Overall, these findings supported that VitD3 promotes the secretion of steroid hormones, thereby affecting seasonal changes in ovarian function in the muskrats.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.