Maximilian Engel, Guillermo Olicón-Méndez, Nathalie Wehlitz, Stefanie Winkelmann
{"title":"Synchronization and Random Attractors in Reaction Jump Processes","authors":"Maximilian Engel, Guillermo Olicón-Méndez, Nathalie Wehlitz, Stefanie Winkelmann","doi":"10.1007/s10884-023-10345-4","DOIUrl":null,"url":null,"abstract":"<p>This work explores a synchronization-like phenomenon induced by common noise for continuous-time Markov jump processes given by chemical reaction networks. Based on Gillespie’s stochastic simulation algorithm, a corresponding random dynamical system is formulated in a two-step procedure, at first for the states of the embedded discrete-time Markov chain and then for the augmented Markov chain including random jump times. We uncover a time-shifted synchronization in the sense that—after some initial waiting time—one trajectory exactly replicates another one with a certain time delay. Whether or not such a synchronization behavior occurs depends on the combination of the initial states. We prove this partial time-shifted synchronization for the special setting of a birth-death process by analyzing the corresponding two-point motion of the embedded Markov chain and determine the structure of the associated random attractor. In this context, we also provide general results on existence and form of random attractors for discrete-time, discrete-space random dynamical systems.</p>","PeriodicalId":15624,"journal":{"name":"Journal of Dynamics and Differential Equations","volume":"138 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-023-10345-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work explores a synchronization-like phenomenon induced by common noise for continuous-time Markov jump processes given by chemical reaction networks. Based on Gillespie’s stochastic simulation algorithm, a corresponding random dynamical system is formulated in a two-step procedure, at first for the states of the embedded discrete-time Markov chain and then for the augmented Markov chain including random jump times. We uncover a time-shifted synchronization in the sense that—after some initial waiting time—one trajectory exactly replicates another one with a certain time delay. Whether or not such a synchronization behavior occurs depends on the combination of the initial states. We prove this partial time-shifted synchronization for the special setting of a birth-death process by analyzing the corresponding two-point motion of the embedded Markov chain and determine the structure of the associated random attractor. In this context, we also provide general results on existence and form of random attractors for discrete-time, discrete-space random dynamical systems.
期刊介绍:
Journal of Dynamics and Differential Equations serves as an international forum for the publication of high-quality, peer-reviewed original papers in the field of mathematics, biology, engineering, physics, and other areas of science. The dynamical issues treated in the journal cover all the classical topics, including attractors, bifurcation theory, connection theory, dichotomies, stability theory and transversality, as well as topics in new and emerging areas of the field.