{"title":"Intelligent Retrieval and Comprehension of Entrepreneurship Education Resources Based on Semantic Summarization of Knowledge Graphs","authors":"Haiyang Yu;Entai Wang;Qi Lang;Jianan Wang","doi":"10.1109/TLT.2024.3364155","DOIUrl":null,"url":null,"abstract":"The latest technologies in natural language processing provide creative, knowledge retrieval, and question-answering technologies in the design of intelligent education, which can provide learners with personalized feedback and expert guidance. Entrepreneurship education aims to cultivate and develop the innovative thinking and entrepreneurial skills of students, making it a practical form of education. However, a knowledge retrieval and question-answering teaching assistant system for entrepreneurship education has not been proposed. This observation motivated us to develop a reading comprehension framework to address the challenges of domain-specific knowledge gaps and the weak comprehension of complex texts encountered by intelligent education models in practical applications. The proposed framework mainly includes: question understanding, relevant knowledge retrieval, mathematical calculation, and answer prediction. The techniques involved in the aforementioned modules mainly include text embedding, similarity retrieval, graph convolution, and long short-term memory network. By integrating this model into entrepreneurship courses, learners can participate in real-time discussions and receive immediate feedback, creating a more dynamic and interactive learning environment. To assess the effectiveness of the proposed model, this article conducts answer prediction on single-choice exercises related to entrepreneurship education courses. This study employs the potential of using a question-and-answer format to enhance intelligent entrepreneurship education, paving the way for a more effective and engaging online learning experience.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"17 ","pages":"1210-1221"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10430464/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The latest technologies in natural language processing provide creative, knowledge retrieval, and question-answering technologies in the design of intelligent education, which can provide learners with personalized feedback and expert guidance. Entrepreneurship education aims to cultivate and develop the innovative thinking and entrepreneurial skills of students, making it a practical form of education. However, a knowledge retrieval and question-answering teaching assistant system for entrepreneurship education has not been proposed. This observation motivated us to develop a reading comprehension framework to address the challenges of domain-specific knowledge gaps and the weak comprehension of complex texts encountered by intelligent education models in practical applications. The proposed framework mainly includes: question understanding, relevant knowledge retrieval, mathematical calculation, and answer prediction. The techniques involved in the aforementioned modules mainly include text embedding, similarity retrieval, graph convolution, and long short-term memory network. By integrating this model into entrepreneurship courses, learners can participate in real-time discussions and receive immediate feedback, creating a more dynamic and interactive learning environment. To assess the effectiveness of the proposed model, this article conducts answer prediction on single-choice exercises related to entrepreneurship education courses. This study employs the potential of using a question-and-answer format to enhance intelligent entrepreneurship education, paving the way for a more effective and engaging online learning experience.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.