Rapid locomotion via reinforcement learning

Gabriel B. Margolis, Ge Yang, Kartik Paigwar, Tao Chen, Pulkit Agrawal
{"title":"Rapid locomotion via reinforcement learning","authors":"Gabriel B. Margolis, Ge Yang, Kartik Paigwar, Tao Chen, Pulkit Agrawal","doi":"10.1177/02783649231224053","DOIUrl":null,"url":null,"abstract":"Agile maneuvers such as sprinting and high-speed turning in the wild are challenging for legged robots. We present an end-to-end learned controller that achieves record agility for the MIT Mini Cheetah, sustaining speeds up to 3.9 m/s. This system runs and turns fast on natural terrains like grass, ice, and gravel and responds robustly to disturbances. Our controller is a neural network trained in simulation via reinforcement learning and transferred to the real world. The two key components are (i) an adaptive curriculum on velocity commands and (ii) an online system identification strategy for sim-to-real transfer. Videos of the robot’s behaviors are available at https://agility.csail.mit.edu/ .","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"134 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649231224053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Agile maneuvers such as sprinting and high-speed turning in the wild are challenging for legged robots. We present an end-to-end learned controller that achieves record agility for the MIT Mini Cheetah, sustaining speeds up to 3.9 m/s. This system runs and turns fast on natural terrains like grass, ice, and gravel and responds robustly to disturbances. Our controller is a neural network trained in simulation via reinforcement learning and transferred to the real world. The two key components are (i) an adaptive curriculum on velocity commands and (ii) an online system identification strategy for sim-to-real transfer. Videos of the robot’s behaviors are available at https://agility.csail.mit.edu/ .
通过强化学习实现快速运动
野外冲刺和高速转弯等敏捷动作对于有腿机器人来说极具挑战性。我们介绍了一种端到端学习控制器,它使麻省理工学院的迷你猎豹实现了创纪录的敏捷性,速度最高可达 3.9 米/秒。该系统能在草地、冰面和砾石等自然地形上快速奔跑和转弯,并能对干扰做出稳健的响应。我们的控制器是一个神经网络,通过强化学习在模拟中进行训练,然后移植到现实世界中。其中两个关键部分是:(i) 速度指令的自适应课程;(ii) 用于从模拟到现实转换的在线系统识别策略。有关机器人行为的视频,请访问 https://agility.csail.mit.edu/ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信