Huifeng Xie, Bingbing Li, Zifan Lu, Zitang Liao, Dan Li, Lei He, Zhenqing Dai, Ruikun Sun, Shengli Sun, Chengyong Li
{"title":"Microplastics modify the microbial-mediated carbon metabolism in mangroves","authors":"Huifeng Xie, Bingbing Li, Zifan Lu, Zitang Liao, Dan Li, Lei He, Zhenqing Dai, Ruikun Sun, Shengli Sun, Chengyong Li","doi":"10.1007/s10311-024-01704-8","DOIUrl":null,"url":null,"abstract":"<div><p>Mangroves, a major ecosystem for carbon sequestration, have been recently identified as a microplastic sink, yet the impact of microplastics on the mangrove microbial community is poorly known. Here, we investigated the metabolic activities of mangrove rhizosphere microbiome in the presence of polyethylene, polystyrene, polyamide, and polyvinylchloride, in microcosms, using Biolog™ Ecoplates. Results show that microbial communities in mangrove sediment hold their functional diversity and comprehensive metabolic activity within 56 days of microplastic exposure. However, polyamide and polyvinylchloride microplastics induced a 59.6–66.7% reduction in the rhizosphere microbes’ utilization for their preferred polymer carbon sources. Microbes exposed to polyethylene microplastics showed an activated biotransformation for nitrogen-contained carbon sources. Polyethylene and polyamide microplastics caused a 20.1–22.4% loss available nitrogen. Overall, microplastics are altering the carbon and nitrogen metabolism activities of microbiomes in mangrove wetlands.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 3","pages":"961 - 966"},"PeriodicalIF":15.0000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01704-8","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mangroves, a major ecosystem for carbon sequestration, have been recently identified as a microplastic sink, yet the impact of microplastics on the mangrove microbial community is poorly known. Here, we investigated the metabolic activities of mangrove rhizosphere microbiome in the presence of polyethylene, polystyrene, polyamide, and polyvinylchloride, in microcosms, using Biolog™ Ecoplates. Results show that microbial communities in mangrove sediment hold their functional diversity and comprehensive metabolic activity within 56 days of microplastic exposure. However, polyamide and polyvinylchloride microplastics induced a 59.6–66.7% reduction in the rhizosphere microbes’ utilization for their preferred polymer carbon sources. Microbes exposed to polyethylene microplastics showed an activated biotransformation for nitrogen-contained carbon sources. Polyethylene and polyamide microplastics caused a 20.1–22.4% loss available nitrogen. Overall, microplastics are altering the carbon and nitrogen metabolism activities of microbiomes in mangrove wetlands.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.