Smart plant disease net: Adaptive Dense Hybrid Convolution network with attention mechanism for IoT-based plant disease detection by improved optimization approach.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
N Ananthi, V Balaji, M Mohana, S Gnanapriya
{"title":"Smart plant disease net: Adaptive Dense Hybrid Convolution network with attention mechanism for IoT-based plant disease detection by improved optimization approach.","authors":"N Ananthi, V Balaji, M Mohana, S Gnanapriya","doi":"10.1080/0954898X.2024.2316080","DOIUrl":null,"url":null,"abstract":"<p><p>Plant diseases are rising nowadays. Plant diseases lead to high economic losses. Internet of Things (IoT) technology has found its application in various sectors. This led to the introduction of smart farming, in which IoT has been utilized to help identify the exact spot of the diseased affected region on the leaf from the vast farmland in a well-organized and automated manner. Thus, the main focus of this task is the introduction of a novel plant disease detection model that relies on IoT technology. The collected images are given to the Image Transmission phase. Here, the encryption task is performed by employing the Advanced Encryption Standard (AES) and also the decrypted plant images are fed to the pre-processing stage. The Mask Regions with Convolutional Neural Networks (R-CNN) are used to segment the pre-processed images. Then, the segmented images are given to the detection phase in which the Adaptive Dense Hybrid Convolution Network with Attention Mechanism (ADHCN-AM) approach is utilized to perform the detection of plant disease. From the ADHCN-AM, the final detected plant disease outcomes are obtained. Throughout the entire validation, the offered model shows 95% enhancement in terms of MCC showcasing its effectiveness over the existing approaches.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-39"},"PeriodicalIF":1.1000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2316080","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Plant diseases are rising nowadays. Plant diseases lead to high economic losses. Internet of Things (IoT) technology has found its application in various sectors. This led to the introduction of smart farming, in which IoT has been utilized to help identify the exact spot of the diseased affected region on the leaf from the vast farmland in a well-organized and automated manner. Thus, the main focus of this task is the introduction of a novel plant disease detection model that relies on IoT technology. The collected images are given to the Image Transmission phase. Here, the encryption task is performed by employing the Advanced Encryption Standard (AES) and also the decrypted plant images are fed to the pre-processing stage. The Mask Regions with Convolutional Neural Networks (R-CNN) are used to segment the pre-processed images. Then, the segmented images are given to the detection phase in which the Adaptive Dense Hybrid Convolution Network with Attention Mechanism (ADHCN-AM) approach is utilized to perform the detection of plant disease. From the ADHCN-AM, the final detected plant disease outcomes are obtained. Throughout the entire validation, the offered model shows 95% enhancement in terms of MCC showcasing its effectiveness over the existing approaches.

智能植物病害网:自适应密集混合卷积网络与关注机制,通过改进的优化方法实现基于物联网的植物病害检测。
如今,植物病害呈上升趋势。植物病害导致了巨大的经济损失。物联网(IoT)技术已在各个领域得到应用。这导致了智能农业的引入,在智能农业中,物联网已被用来帮助从广袤的农田中以有序和自动化的方式识别叶片上患病区域的确切位置。因此,本任务的重点是引入一种依赖于物联网技术的新型植物病害检测模型。收集到的图像将进入图像传输阶段。在此,采用高级加密标准(AES)执行加密任务,同时将解密后的植物图像送入预处理阶段。使用带卷积神经网络(R-CNN)的掩码区域对预处理后的图像进行分割。然后,将分割后的图像送入检测阶段,利用具有注意机制的自适应密集混合卷积网络(ADHCN-AM)方法进行植物病害检测。通过 ADHCN-AM,可获得最终的植物病害检测结果。在整个验证过程中,所提供的模型在 MCC 方面提高了 95%,显示了其优于现有方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信