Bioorthogonal Reactions in Bioimaging

IF 8.6 2区 化学 Q1 Chemistry
Eszter Kozma, Péter Kele
{"title":"Bioorthogonal Reactions in Bioimaging","authors":"Eszter Kozma,&nbsp;Péter Kele","doi":"10.1007/s41061-024-00452-1","DOIUrl":null,"url":null,"abstract":"<div><p>Visualization of biomolecules in their native environment or imaging-aided understanding of more complex biomolecular processes are one of the focus areas of chemical biology research, which requires selective, often site-specific labeling of targets. This challenging task is effectively addressed by bioorthogonal chemistry tools in combination with advanced synthetic biology methods. Today, the smart combination of the elements of the bioorthogonal toolbox allows selective installation of multiple markers to selected targets, enabling multicolor or multimodal imaging of biomolecules. Furthermore, recent developments in bioorthogonally applicable probe design that meet the growing demands of superresolution microscopy enable more complex questions to be addressed. These novel, advanced probes enable highly sensitive, low-background, single- or multiphoton imaging of biological species and events in live organisms at resolutions comparable to the size of the biomolecule of interest. Herein, the latest developments in bioorthogonal fluorescent probe design and labeling schemes will be discussed in the context of in cellulo/in vivo (multicolor and/or superresolved) imaging schemes. The second part focuses on the importance of genetically engineered minimal bioorthogonal tags, with a particular interest in site-specific protein tagging applications to answer biological questions.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894152/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-024-00452-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

Visualization of biomolecules in their native environment or imaging-aided understanding of more complex biomolecular processes are one of the focus areas of chemical biology research, which requires selective, often site-specific labeling of targets. This challenging task is effectively addressed by bioorthogonal chemistry tools in combination with advanced synthetic biology methods. Today, the smart combination of the elements of the bioorthogonal toolbox allows selective installation of multiple markers to selected targets, enabling multicolor or multimodal imaging of biomolecules. Furthermore, recent developments in bioorthogonally applicable probe design that meet the growing demands of superresolution microscopy enable more complex questions to be addressed. These novel, advanced probes enable highly sensitive, low-background, single- or multiphoton imaging of biological species and events in live organisms at resolutions comparable to the size of the biomolecule of interest. Herein, the latest developments in bioorthogonal fluorescent probe design and labeling schemes will be discussed in the context of in cellulo/in vivo (multicolor and/or superresolved) imaging schemes. The second part focuses on the importance of genetically engineered minimal bioorthogonal tags, with a particular interest in site-specific protein tagging applications to answer biological questions.

Abstract Image

生物成像中的生物正交反应
可视化原生环境中的生物分子或通过成像辅助理解更复杂的生物分子过程是化学生物学研究的重点领域之一,这需要对靶标进行选择性、往往是特定位点的标记。生物正交化学工具与先进的合成生物学方法相结合,可以有效地解决这一具有挑战性的任务。如今,将生物正交工具箱中的各种元素巧妙地结合在一起,可将多种标记物选择性地安装到选定的靶标上,从而实现生物分子的多色或多模态成像。此外,生物正交探针设计的最新发展满足了超分辨率显微镜日益增长的需求,使更复杂的问题得以解决。这些新颖、先进的探针可对生物物种和活体生物体内的事件进行高灵敏度、低背景、单光子或多光子成像,其分辨率与相关生物分子的大小相当。本文将结合细胞内/活体(多色和/或超分辨)成像方案,讨论生物正交荧光探针设计和标记方案的最新发展。第二部分重点讨论基因工程最小生物正交标签的重要性,特别关注用于回答生物学问题的特定位点蛋白质标签应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry 化学-化学综合
CiteScore
11.70
自引率
1.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science. Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community. In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信