{"title":"Datalog rewritability and data complexity of ALCHOIQ with closed predicates","authors":"Sanja Lukumbuzya , Magdalena Ortiz , Mantas Šimkus","doi":"10.1016/j.artint.2024.104099","DOIUrl":null,"url":null,"abstract":"<div><p>We study the relative expressiveness of ontology-mediated queries (OMQs) formulated in the expressive Description Logic <span><math><mi>ALCHOIQ</mi></math></span> extended with closed predicates. In particular, we present a polynomial time translation from OMQs into Datalog with negation under the stable model semantics, the formalism that underlies Answer Set Programming. This is a novel and non-trivial result: the considered OMQs are not only non-monotonic, but also feature a tricky combination of nominals, inverse roles, and counting. We start with atomic queries and then lift our approach to a large class of first-order queries where quantification is “guarded” by closed predicates. Our translation is based on a characterization of the query answering problem via integer programming, and a specially crafted program in Datalog with negation that finds solutions to dynamically generated systems of integer inequalities. As an important by-product of our translation we get that the query answering problem is co-NP-complete in data complexity for the considered class of OMQs. Thus, answering these OMQs in the presence of closed predicates is not harder than answering them in the standard setting. This is not obvious as closed predicates are known to increase data complexity for some existing ontology languages.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"330 ","pages":"Article 104099"},"PeriodicalIF":5.1000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0004370224000353/pdfft?md5=592b8d7cf49fb907ac6ec3932a493a97&pid=1-s2.0-S0004370224000353-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224000353","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We study the relative expressiveness of ontology-mediated queries (OMQs) formulated in the expressive Description Logic extended with closed predicates. In particular, we present a polynomial time translation from OMQs into Datalog with negation under the stable model semantics, the formalism that underlies Answer Set Programming. This is a novel and non-trivial result: the considered OMQs are not only non-monotonic, but also feature a tricky combination of nominals, inverse roles, and counting. We start with atomic queries and then lift our approach to a large class of first-order queries where quantification is “guarded” by closed predicates. Our translation is based on a characterization of the query answering problem via integer programming, and a specially crafted program in Datalog with negation that finds solutions to dynamically generated systems of integer inequalities. As an important by-product of our translation we get that the query answering problem is co-NP-complete in data complexity for the considered class of OMQs. Thus, answering these OMQs in the presence of closed predicates is not harder than answering them in the standard setting. This is not obvious as closed predicates are known to increase data complexity for some existing ontology languages.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.