Irina Yankelzon, Lexie Schilling, Klaus Butterbach-Bahl, Rainer Gasche, Jincheng Han, Lorenz Hartl, Julia Kepp, Amanda Matson, Ulrike Ostler, Clemens Scheer, Katrin Schneider, Arne Tenspolde, Reinhard Well, Benjamin Wolf, Nicole Wrage-Moennig, Michael Dannenmann
{"title":"Lysimeter-based full fertilizer 15N balances corroborate direct dinitrogen emission measurements using the 15N gas flow method","authors":"Irina Yankelzon, Lexie Schilling, Klaus Butterbach-Bahl, Rainer Gasche, Jincheng Han, Lorenz Hartl, Julia Kepp, Amanda Matson, Ulrike Ostler, Clemens Scheer, Katrin Schneider, Arne Tenspolde, Reinhard Well, Benjamin Wolf, Nicole Wrage-Moennig, Michael Dannenmann","doi":"10.1007/s00374-024-01801-4","DOIUrl":null,"url":null,"abstract":"<p>The <sup>15</sup>N gas flux (<sup>15</sup>NGF) method allows for direct in situ quantification of dinitrogen (N<sub>2</sub>) emissions from soils, but a successful cross-comparison with another method is missing. The objectives of this study were to quantify N<sub>2</sub> emissions of a wheat rotation using the <sup>15</sup>NGF method, to compare these N<sub>2</sub> emissions with those obtained from a lysimeter-based <sup>15</sup>N fertilizer mass balance approach, and to contextualize N<sub>2</sub> emissions with <sup>15</sup>N enrichment of N<sub>2</sub> in soil air. For four sampling periods, fertilizer-derived N<sub>2</sub> losses (<sup>15</sup>NGF method) were similar to unaccounted fertilizer N fates as obtained from the <sup>15</sup>N mass balance approach. Total N<sub>2</sub> emissions (<sup>15</sup>NGF method) amounted to 21 ± 3 kg N ha<sup>− 1</sup>, with 13 ± 2 kg N ha<sup>− 1</sup> (7.5% of applied fertilizer N) originating from fertilizer. In comparison, the <sup>15</sup>N mass balance approach overall indicated fertilizer-derived N<sub>2</sub> emissions of 11%, equivalent to 18 ± 13 kg N ha<sup>− 1</sup>. Nitrous oxide (N<sub>2</sub>O) emissions were small (0.15 ± 0.01 kg N ha<sup>− 1</sup> or 0.1% of fertilizer N), resulting in a large mean N<sub>2</sub>:(N<sub>2</sub>O + N<sub>2</sub>) ratio of 0.94 ± 0.06. Due to the applied drip fertigation, ammonia emissions accounted for < 1% of fertilizer-N, while N leaching was negligible. The temporal variability of N<sub>2</sub> emissions was well explained by the δ<sup>15</sup>N<sub>2</sub> in soil air down to 50 cm depth. We conclude the <sup>15</sup>NGF method provides realistic estimates of field N<sub>2</sub> emissions and should be more widely used to better understand soil N<sub>2</sub> losses. Moreover, combining soil air δ<sup>15</sup>N<sub>2</sub> measurements with diffusion modeling might be an alternative approach for constraining soil N<sub>2</sub> emissions.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01801-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The 15N gas flux (15NGF) method allows for direct in situ quantification of dinitrogen (N2) emissions from soils, but a successful cross-comparison with another method is missing. The objectives of this study were to quantify N2 emissions of a wheat rotation using the 15NGF method, to compare these N2 emissions with those obtained from a lysimeter-based 15N fertilizer mass balance approach, and to contextualize N2 emissions with 15N enrichment of N2 in soil air. For four sampling periods, fertilizer-derived N2 losses (15NGF method) were similar to unaccounted fertilizer N fates as obtained from the 15N mass balance approach. Total N2 emissions (15NGF method) amounted to 21 ± 3 kg N ha− 1, with 13 ± 2 kg N ha− 1 (7.5% of applied fertilizer N) originating from fertilizer. In comparison, the 15N mass balance approach overall indicated fertilizer-derived N2 emissions of 11%, equivalent to 18 ± 13 kg N ha− 1. Nitrous oxide (N2O) emissions were small (0.15 ± 0.01 kg N ha− 1 or 0.1% of fertilizer N), resulting in a large mean N2:(N2O + N2) ratio of 0.94 ± 0.06. Due to the applied drip fertigation, ammonia emissions accounted for < 1% of fertilizer-N, while N leaching was negligible. The temporal variability of N2 emissions was well explained by the δ15N2 in soil air down to 50 cm depth. We conclude the 15NGF method provides realistic estimates of field N2 emissions and should be more widely used to better understand soil N2 losses. Moreover, combining soil air δ15N2 measurements with diffusion modeling might be an alternative approach for constraining soil N2 emissions.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.