Thermal Heating in ReRAM Crossbar Arrays: Challenges and Solutions

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kamilya Smagulova;Mohammed E. Fouda;Ahmed Eltawil
{"title":"Thermal Heating in ReRAM Crossbar Arrays: Challenges and Solutions","authors":"Kamilya Smagulova;Mohammed E. Fouda;Ahmed Eltawil","doi":"10.1109/OJCAS.2024.3360257","DOIUrl":null,"url":null,"abstract":"The high speed, scalability, and parallelism offered by ReRAM crossbar arrays foster the development of ReRAM-based next-generation AI accelerators. At the same time, the sensitivity of ReRAM to temperature variations decreases \n<inline-formula> <tex-math>$\\text{R}_{ON}/\\text{R}_{OFF}$ </tex-math></inline-formula>\n ratio and negatively affects the achieved accuracy and reliability of the hardware. Various works on temperature-aware optimization and remapping in ReRAM crossbar arrays reported up to 58% improvement in accuracy and \n<inline-formula> <tex-math>$2.39\\times $ </tex-math></inline-formula>\n ReRAM lifetime enhancement. This paper classifies the challenges caused by thermal heat, starting from constraints in ReRAM cells’ dimensions and characteristics to their placement in the architecture. In addition, it reviews the available solutions designed to mitigate the impact of these challenges, including emerging temperature-resilient Deep Neural Network (DNN) training methods. Our work also provides a summary of the techniques and their advantages and limitations.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10416883","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10416883/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The high speed, scalability, and parallelism offered by ReRAM crossbar arrays foster the development of ReRAM-based next-generation AI accelerators. At the same time, the sensitivity of ReRAM to temperature variations decreases $\text{R}_{ON}/\text{R}_{OFF}$ ratio and negatively affects the achieved accuracy and reliability of the hardware. Various works on temperature-aware optimization and remapping in ReRAM crossbar arrays reported up to 58% improvement in accuracy and $2.39\times $ ReRAM lifetime enhancement. This paper classifies the challenges caused by thermal heat, starting from constraints in ReRAM cells’ dimensions and characteristics to their placement in the architecture. In addition, it reviews the available solutions designed to mitigate the impact of these challenges, including emerging temperature-resilient Deep Neural Network (DNN) training methods. Our work also provides a summary of the techniques and their advantages and limitations.
ReRAM 交叉条阵列中的热加热:挑战与解决方案
ReRAM 交叉条阵列提供的高速度、可扩展性和并行性促进了基于 ReRAM 的下一代人工智能加速器的发展。与此同时,ReRAM 对温度变化的敏感性降低了 ReRAM 与温度的比率,对硬件的精度和可靠性产生了负面影响。据报道,在 ReRAM 交叉条阵列中进行温度感知优化和重映射的各种工作最多可将精度提高 58%,并将 ReRAM 的寿命延长 2.39 倍。本文从 ReRAM 单元的尺寸和特性限制到它们在架构中的位置,对热量带来的挑战进行了分类。此外,它还回顾了旨在减轻这些挑战影响的可用解决方案,包括新出现的耐温深度神经网络(DNN)训练方法。我们的研究还总结了这些技术及其优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信