Gilbert Koelewijn, Marije P Hennus, Helianthe S M Kort, Joost Frenkel, Thijs van Houwelingen
{"title":"Games to support teaching clinical reasoning in health professions education: a scoping review.","authors":"Gilbert Koelewijn, Marije P Hennus, Helianthe S M Kort, Joost Frenkel, Thijs van Houwelingen","doi":"10.1080/10872981.2024.2316971","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Given the complexity of teaching clinical reasoning to (future) healthcare professionals, the utilization of serious games has become popular for supporting clinical reasoning education. This scoping review outlines games designed to support teaching clinical reasoning in health professions education, with a specific emphasis on their alignment with the 8-step clinical reasoning cycle and the reflective practice framework, fundamental for effective learning.</p><p><strong>Methods: </strong>A scoping review using systematic searches across seven databases (PubMed, CINAHL, ERIC, PsycINFO, Scopus, Web of Science, and Embase) was conducted. Game characteristics, technical requirements, and incorporation of clinical reasoning cycle steps were analyzed. Additional game information was obtained from the authors.</p><p><strong>Results: </strong>Nineteen unique games emerged, primarily simulation and escape room genres. Most games incorporated the following clinical reasoning steps: patient consideration (step 1), cue collection (step 2), intervention (step 6), and outcome evaluation (step 7). Processing information (step 3) and understanding the patient's problem (step 4) were less prevalent, while goal setting (step 5) and reflection (step 8) were least integrated.</p><p><strong>Conclusion: </strong>All serious games reviewed show potential for improving clinical reasoning skills, but thoughtful alignment with learning objectives and contextual factors is vital. While this study aids health professions educators in understanding how games may support teaching of clinical reasoning, further research is needed to optimize their effective use in education. Notably, most games lack explicit incorporation of all clinical reasoning cycle steps, especially reflection, limiting its role in reflective practice. Hence, we recommend prioritizing a systematic clinical reasoning model with explicit reflective steps when using serious games for teaching clinical reasoning.</p>","PeriodicalId":47656,"journal":{"name":"Medical Education Online","volume":"29 1","pages":"2316971"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Education Online","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10872981.2024.2316971","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Given the complexity of teaching clinical reasoning to (future) healthcare professionals, the utilization of serious games has become popular for supporting clinical reasoning education. This scoping review outlines games designed to support teaching clinical reasoning in health professions education, with a specific emphasis on their alignment with the 8-step clinical reasoning cycle and the reflective practice framework, fundamental for effective learning.
Methods: A scoping review using systematic searches across seven databases (PubMed, CINAHL, ERIC, PsycINFO, Scopus, Web of Science, and Embase) was conducted. Game characteristics, technical requirements, and incorporation of clinical reasoning cycle steps were analyzed. Additional game information was obtained from the authors.
Results: Nineteen unique games emerged, primarily simulation and escape room genres. Most games incorporated the following clinical reasoning steps: patient consideration (step 1), cue collection (step 2), intervention (step 6), and outcome evaluation (step 7). Processing information (step 3) and understanding the patient's problem (step 4) were less prevalent, while goal setting (step 5) and reflection (step 8) were least integrated.
Conclusion: All serious games reviewed show potential for improving clinical reasoning skills, but thoughtful alignment with learning objectives and contextual factors is vital. While this study aids health professions educators in understanding how games may support teaching of clinical reasoning, further research is needed to optimize their effective use in education. Notably, most games lack explicit incorporation of all clinical reasoning cycle steps, especially reflection, limiting its role in reflective practice. Hence, we recommend prioritizing a systematic clinical reasoning model with explicit reflective steps when using serious games for teaching clinical reasoning.
期刊介绍:
Medical Education Online is an open access journal of health care education, publishing peer-reviewed research, perspectives, reviews, and early documentation of new ideas and trends.
Medical Education Online aims to disseminate information on the education and training of physicians and other health care professionals. Manuscripts may address any aspect of health care education and training, including, but not limited to:
-Basic science education
-Clinical science education
-Residency education
-Learning theory
-Problem-based learning (PBL)
-Curriculum development
-Research design and statistics
-Measurement and evaluation
-Faculty development
-Informatics/web