APTES and CTAB Synergistic Induce a Heterozygous CsPbBr3/Cs4PbBr6 Perovskite Composite and its Application on the Sensitive Fluorescent Detection of Iodide ions.
{"title":"APTES and CTAB Synergistic Induce a Heterozygous CsPbBr<sub>3</sub>/Cs<sub>4</sub>PbBr<sub>6</sub> Perovskite Composite and its Application on the Sensitive Fluorescent Detection of Iodide ions.","authors":"Lingyu Jiang, Yunyun Qiu, Li Xiang, Jianshe Tang","doi":"10.1007/s10895-024-03623-x","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, all-inorganic halide perovskite quantum dots (IPQD) as a new fluorescent material with excellent fluorescence properties have attracted wide attention. However, their instability in polar solvents is the main factor hindering their application in analysis. Herein, a heterozygous perovskite (CsPbBr<sub>3</sub>/Cs<sub>4</sub>PbBr<sub>6</sub>) was simultaneously prepared and stabilized by a silylanization strategy using (3-aminopropyl)-triethoxysilane (APTES) and cetyltrimethyl ammonium bromide (CTAB) assisted precipitation encapsulation method. The synthesized CsPbBr<sub>3</sub>/Cs<sub>4</sub>PbBr<sub>6</sub> emitted an independent fluorescence at 520 nm. The obtained CsPbBr<sub>3</sub>/Cs<sub>4</sub>PbBr<sub>6</sub> exhibited good stability in ethanol/water mixtures. It was used as a fluorescent probe for sensitively detecting iodide ions (I<sup>-</sup>) by fluorescence quenching mechanism in the concentration range of 1 ~ 70.0 µM with the detection limit (LOD) of 0.83 µM (relative standard deviation (RSD) = 1.33%, n = 20). The simplicity and high selectivity of the proposed fluorescent analysis method were the prominent features. This work could be extended to the other target ion detection by a perovskite fluorescent quenching.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"1529-1538"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03623-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, all-inorganic halide perovskite quantum dots (IPQD) as a new fluorescent material with excellent fluorescence properties have attracted wide attention. However, their instability in polar solvents is the main factor hindering their application in analysis. Herein, a heterozygous perovskite (CsPbBr3/Cs4PbBr6) was simultaneously prepared and stabilized by a silylanization strategy using (3-aminopropyl)-triethoxysilane (APTES) and cetyltrimethyl ammonium bromide (CTAB) assisted precipitation encapsulation method. The synthesized CsPbBr3/Cs4PbBr6 emitted an independent fluorescence at 520 nm. The obtained CsPbBr3/Cs4PbBr6 exhibited good stability in ethanol/water mixtures. It was used as a fluorescent probe for sensitively detecting iodide ions (I-) by fluorescence quenching mechanism in the concentration range of 1 ~ 70.0 µM with the detection limit (LOD) of 0.83 µM (relative standard deviation (RSD) = 1.33%, n = 20). The simplicity and high selectivity of the proposed fluorescent analysis method were the prominent features. This work could be extended to the other target ion detection by a perovskite fluorescent quenching.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.