{"title":"Machine learning, a powerful tool for the prediction of BiVO<sub>4</sub> nanoparticles efficiency in photocatalytic degradation of organic dyes.","authors":"Gnanaprakasam A, Thirumarimurugan M, Shanmathi N","doi":"10.1080/10934529.2024.2319510","DOIUrl":null,"url":null,"abstract":"<p><p>Wastewater pollution caused by organic dyes is a growing concern due to its negative impact on human health and aquatic life. To tackle this issue, the use of advanced wastewater treatment with nano photocatalysts has emerged as a promising solution. However, experimental procedures for identifying the optimal conditions for dye degradation could be time-consuming and expensive. To overcome this, machine learning methods have been employed to predict the degradation of organic dyes in a more efficient manner by recognizing patterns in the process and addressing its feasibility. The objective of this study is to develop a machine learning model to predict the degradation of organic dyes and identify the main variables affecting the photocatalytic degradation capacity and removal of organic dyes from wastewater. Nine machine learning algorithms were tested including multiple linear regression, polynomial regression, decision trees, random forest, adaptive boosting, extreme gradient boosting, k-nearest neighbors, support vector machine, and artificial neural network. The study found that the XGBoosting algorithm outperformed the other models, making it ideal for predicting the photocatalytic degradation capacity of BiVO<sub>4</sub>. The results suggest that XGBoost is a suitable model for predicting the photocatalytic degradation of wastewater using BiVO<sub>4</sub> with different dopants.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2024.2319510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater pollution caused by organic dyes is a growing concern due to its negative impact on human health and aquatic life. To tackle this issue, the use of advanced wastewater treatment with nano photocatalysts has emerged as a promising solution. However, experimental procedures for identifying the optimal conditions for dye degradation could be time-consuming and expensive. To overcome this, machine learning methods have been employed to predict the degradation of organic dyes in a more efficient manner by recognizing patterns in the process and addressing its feasibility. The objective of this study is to develop a machine learning model to predict the degradation of organic dyes and identify the main variables affecting the photocatalytic degradation capacity and removal of organic dyes from wastewater. Nine machine learning algorithms were tested including multiple linear regression, polynomial regression, decision trees, random forest, adaptive boosting, extreme gradient boosting, k-nearest neighbors, support vector machine, and artificial neural network. The study found that the XGBoosting algorithm outperformed the other models, making it ideal for predicting the photocatalytic degradation capacity of BiVO4. The results suggest that XGBoost is a suitable model for predicting the photocatalytic degradation of wastewater using BiVO4 with different dopants.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.