Machine learning, a powerful tool for the prediction of BiVO4 nanoparticles efficiency in photocatalytic degradation of organic dyes.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-01-01 Epub Date: 2024-02-23 DOI:10.1080/10934529.2024.2319510
Gnanaprakasam A, Thirumarimurugan M, Shanmathi N
{"title":"Machine learning, a powerful tool for the prediction of BiVO<sub>4</sub> nanoparticles efficiency in photocatalytic degradation of organic dyes.","authors":"Gnanaprakasam A, Thirumarimurugan M, Shanmathi N","doi":"10.1080/10934529.2024.2319510","DOIUrl":null,"url":null,"abstract":"<p><p>Wastewater pollution caused by organic dyes is a growing concern due to its negative impact on human health and aquatic life. To tackle this issue, the use of advanced wastewater treatment with nano photocatalysts has emerged as a promising solution. However, experimental procedures for identifying the optimal conditions for dye degradation could be time-consuming and expensive. To overcome this, machine learning methods have been employed to predict the degradation of organic dyes in a more efficient manner by recognizing patterns in the process and addressing its feasibility. The objective of this study is to develop a machine learning model to predict the degradation of organic dyes and identify the main variables affecting the photocatalytic degradation capacity and removal of organic dyes from wastewater. Nine machine learning algorithms were tested including multiple linear regression, polynomial regression, decision trees, random forest, adaptive boosting, extreme gradient boosting, k-nearest neighbors, support vector machine, and artificial neural network. The study found that the XGBoosting algorithm outperformed the other models, making it ideal for predicting the photocatalytic degradation capacity of BiVO<sub>4</sub>. The results suggest that XGBoost is a suitable model for predicting the photocatalytic degradation of wastewater using BiVO<sub>4</sub> with different dopants.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2024.2319510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wastewater pollution caused by organic dyes is a growing concern due to its negative impact on human health and aquatic life. To tackle this issue, the use of advanced wastewater treatment with nano photocatalysts has emerged as a promising solution. However, experimental procedures for identifying the optimal conditions for dye degradation could be time-consuming and expensive. To overcome this, machine learning methods have been employed to predict the degradation of organic dyes in a more efficient manner by recognizing patterns in the process and addressing its feasibility. The objective of this study is to develop a machine learning model to predict the degradation of organic dyes and identify the main variables affecting the photocatalytic degradation capacity and removal of organic dyes from wastewater. Nine machine learning algorithms were tested including multiple linear regression, polynomial regression, decision trees, random forest, adaptive boosting, extreme gradient boosting, k-nearest neighbors, support vector machine, and artificial neural network. The study found that the XGBoosting algorithm outperformed the other models, making it ideal for predicting the photocatalytic degradation capacity of BiVO4. The results suggest that XGBoost is a suitable model for predicting the photocatalytic degradation of wastewater using BiVO4 with different dopants.

机器学习是预测 BiVO4 纳米粒子光催化降解有机染料效率的有力工具。
有机染料造成的废水污染对人类健康和水生生物产生了负面影响,日益引起人们的关注。为解决这一问题,使用纳米光催化剂进行先进的废水处理已成为一种前景广阔的解决方案。然而,确定染料降解最佳条件的实验程序既耗时又昂贵。为了克服这一问题,人们采用了机器学习方法,通过识别过程中的模式并解决其可行性问题,以更有效的方式预测有机染料的降解。本研究旨在开发一种机器学习模型来预测有机染料的降解,并确定影响光催化降解能力和去除废水中有机染料的主要变量。研究测试了九种机器学习算法,包括多元线性回归、多项式回归、决策树、随机森林、自适应提升、极梯度提升、k-近邻、支持向量机和人工神经网络。研究发现,XGBoosting 算法的性能优于其他模型,是预测 BiVO4 光催化降解能力的理想选择。研究结果表明,XGBoost 是预测使用不同掺杂剂的 BiVO4 对废水进行光催化降解的合适模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信