Triangulation of the Earth’s surface and its application to the geodetic velocity field modelling

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Sandi Berk
{"title":"Triangulation of the Earth’s surface and its application to the geodetic velocity field modelling","authors":"Sandi Berk","doi":"10.1007/s00190-023-01817-y","DOIUrl":null,"url":null,"abstract":"<p>The Earth’s crust is exposed by tectonic processes and is not static over time. Modelling of the Earth’s surface velocities is of utmost importance for research in geodesy, geophysics, structural geology, and other geosciences. It may support positioning, navigation, seismic risk, and volcano notification services, for example. Space geodetic techniques can be used to provide high-quality velocities in a network of geodetic sites. Velocity field modelling should, however, expand the velocities from a discrete set of points to any location in-between. This paper presents four new methods for the Earth’s surface velocity interpolation. Contrary to the widely used approach dividing the velocity field to the horizontal and vertical components, a full 3D interpolation approach is proposed based on the Delaunay triangulation and the n-simplex interpolation. The use of a combination of all three components is advantageous for\ngeophysical interpretation. The proposed interpolation approach is entirely local but enables global modelling, which does not suffer from map projection distortions and singularities at the poles. Various global and regional position/velocity datasets are used to evaluate the performance of the proposed velocity interpolation methods. The latter provide practically the same results when applied to regional velocity field modelling. However, the so-called continuous piecewise quasi-radial 3D velocity field interpolation method is recommended for its favourable properties. It introduces an ellipsoidal Earth model, appropriately considers vertical/up and horizontal velocity components, tends to radial symmetry, and provides continuity for the interpolated velocity components as well as for the estimated uncertainties.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"2014 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-023-01817-y","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Earth’s crust is exposed by tectonic processes and is not static over time. Modelling of the Earth’s surface velocities is of utmost importance for research in geodesy, geophysics, structural geology, and other geosciences. It may support positioning, navigation, seismic risk, and volcano notification services, for example. Space geodetic techniques can be used to provide high-quality velocities in a network of geodetic sites. Velocity field modelling should, however, expand the velocities from a discrete set of points to any location in-between. This paper presents four new methods for the Earth’s surface velocity interpolation. Contrary to the widely used approach dividing the velocity field to the horizontal and vertical components, a full 3D interpolation approach is proposed based on the Delaunay triangulation and the n-simplex interpolation. The use of a combination of all three components is advantageous for geophysical interpretation. The proposed interpolation approach is entirely local but enables global modelling, which does not suffer from map projection distortions and singularities at the poles. Various global and regional position/velocity datasets are used to evaluate the performance of the proposed velocity interpolation methods. The latter provide practically the same results when applied to regional velocity field modelling. However, the so-called continuous piecewise quasi-radial 3D velocity field interpolation method is recommended for its favourable properties. It introduces an ellipsoidal Earth model, appropriately considers vertical/up and horizontal velocity components, tends to radial symmetry, and provides continuity for the interpolated velocity components as well as for the estimated uncertainties.

Abstract Image

地球表面三角测量及其在大地测量速度场建模中的应用
地壳在构造过程中裸露出来,并不是一成不变的。地球表面速度建模对于大地测量学、地球物理学、构造地质学和其他地球科学的研究至关重要。例如,它可以支持定位、导航、地震风险和火山通知服务。空间大地测量技术可用于在大地测量站点网络中提供高质量的速度。然而,速度场建模应将速度从离散点扩展到两者之间的任何位置。本文介绍了地球表面速度插值的四种新方法。与广泛使用的将速度场划分为水平和垂直分量的方法相反,本文提出了一种基于 Delaunay 三角剖分法和 n-simplex 插值法的全三维插值方法。将所有三个分量结合起来使用有利于地球物理解释。所提出的插值方法完全是局部的,但可以进行全球建模,不会受到地图投影失真和两极奇异现象的影响。各种全球和区域位置/速度数据集被用来评估所提出的速度插值方法的性能。当应用于区域速度场建模时,后者提供了几乎相同的结果。然而,所谓的连续分片准径向三维速度场插值方法因其有利的特性而受到推荐。它引入了椭球地球模型,适当考虑了垂直/向上和水平速度分量,趋向于径向对称,并为插值速度分量以及估计的不确定性提供了连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信