Small time asymptotics of the entropy of the heat kernel on a Riemannian manifold

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Vlado Menkovski , Jacobus W. Portegies , Mahefa Ratsisetraina Ravelonanosy
{"title":"Small time asymptotics of the entropy of the heat kernel on a Riemannian manifold","authors":"Vlado Menkovski ,&nbsp;Jacobus W. Portegies ,&nbsp;Mahefa Ratsisetraina Ravelonanosy","doi":"10.1016/j.acha.2024.101642","DOIUrl":null,"url":null,"abstract":"<div><p>We give an asymptotic expansion of the relative entropy between the heat kernel <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>z</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> of a compact Riemannian manifold <em>Z</em> and the normalized Riemannian volume for small values of <em>t</em> and for a fixed element <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>. We prove that coefficients in the expansion can be expressed as universal polynomials in the components of the curvature tensor and its covariant derivatives at <em>z</em>, when they are expressed in terms of normal coordinates. We describe a method to compute the coefficients, and we use the method to compute the first three coefficients. The asymptotic expansion is necessary for an unsupervised machine-learning algorithm called the Diffusion Variational Autoencoder.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101642"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000198/pdfft?md5=9b07347114acdc753144d27860b6f702&pid=1-s2.0-S1063520324000198-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000198","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We give an asymptotic expansion of the relative entropy between the heat kernel qZ(t,z,w) of a compact Riemannian manifold Z and the normalized Riemannian volume for small values of t and for a fixed element zZ. We prove that coefficients in the expansion can be expressed as universal polynomials in the components of the curvature tensor and its covariant derivatives at z, when they are expressed in terms of normal coordinates. We describe a method to compute the coefficients, and we use the method to compute the first three coefficients. The asymptotic expansion is necessary for an unsupervised machine-learning algorithm called the Diffusion Variational Autoencoder.

黎曼流形上热核熵的小时间渐近线
我们给出了紧凑黎曼流形 Z 的热核 qZ(t,z,w)与归一化黎曼体积之间的相对熵的渐近展开,适用于小 t 值和固定元素 z∈Z。我们证明,当膨胀中的系数用正态坐标表示时,它们可以用曲率张量的分量及其在 z 处的协变导数中的通用多项式来表示。我们描述了计算这些系数的方法,并用该方法计算了前三个系数。渐近展开对于一种名为 "扩散变异自动编码器 "的无监督机器学习算法是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信