Vlado Menkovski , Jacobus W. Portegies , Mahefa Ratsisetraina Ravelonanosy
{"title":"Small time asymptotics of the entropy of the heat kernel on a Riemannian manifold","authors":"Vlado Menkovski , Jacobus W. Portegies , Mahefa Ratsisetraina Ravelonanosy","doi":"10.1016/j.acha.2024.101642","DOIUrl":null,"url":null,"abstract":"<div><p>We give an asymptotic expansion of the relative entropy between the heat kernel <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>z</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> of a compact Riemannian manifold <em>Z</em> and the normalized Riemannian volume for small values of <em>t</em> and for a fixed element <span><math><mi>z</mi><mo>∈</mo><mi>Z</mi></math></span>. We prove that coefficients in the expansion can be expressed as universal polynomials in the components of the curvature tensor and its covariant derivatives at <em>z</em>, when they are expressed in terms of normal coordinates. We describe a method to compute the coefficients, and we use the method to compute the first three coefficients. The asymptotic expansion is necessary for an unsupervised machine-learning algorithm called the Diffusion Variational Autoencoder.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101642"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000198/pdfft?md5=9b07347114acdc753144d27860b6f702&pid=1-s2.0-S1063520324000198-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000198","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We give an asymptotic expansion of the relative entropy between the heat kernel of a compact Riemannian manifold Z and the normalized Riemannian volume for small values of t and for a fixed element . We prove that coefficients in the expansion can be expressed as universal polynomials in the components of the curvature tensor and its covariant derivatives at z, when they are expressed in terms of normal coordinates. We describe a method to compute the coefficients, and we use the method to compute the first three coefficients. The asymptotic expansion is necessary for an unsupervised machine-learning algorithm called the Diffusion Variational Autoencoder.
我们给出了紧凑黎曼流形 Z 的热核 qZ(t,z,w)与归一化黎曼体积之间的相对熵的渐近展开,适用于小 t 值和固定元素 z∈Z。我们证明,当膨胀中的系数用正态坐标表示时,它们可以用曲率张量的分量及其在 z 处的协变导数中的通用多项式来表示。我们描述了计算这些系数的方法,并用该方法计算了前三个系数。渐近展开对于一种名为 "扩散变异自动编码器 "的无监督机器学习算法是必要的。
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.