{"title":"Variable bandwidth via Wilson bases","authors":"Beatrice Andreolli, Karlheinz Gröchenig","doi":"10.1016/j.acha.2024.101641","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new concept of variable bandwidth that is based on the frequency truncation of Wilson expansions. For this model we derive sampling theorems, a complete reconstruction of <em>f</em> from its samples, and necessary density conditions for sampling. Numerical simulations support the interpretation of this model of variable bandwidth. In particular, chirps, as they arise in the description of gravitational waves, can be modeled in a space of variable bandwidth.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101641"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000186/pdfft?md5=a1bc8edd6739aca166f773e9d3ff503a&pid=1-s2.0-S1063520324000186-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000186","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a new concept of variable bandwidth that is based on the frequency truncation of Wilson expansions. For this model we derive sampling theorems, a complete reconstruction of f from its samples, and necessary density conditions for sampling. Numerical simulations support the interpretation of this model of variable bandwidth. In particular, chirps, as they arise in the description of gravitational waves, can be modeled in a space of variable bandwidth.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.