Two conjectures of Andrews, Merca and Yee on truncated theta series

IF 0.9 2区 数学 Q2 MATHEMATICS
Shane Chern , Ernest X.W. Xia
{"title":"Two conjectures of Andrews, Merca and Yee on truncated theta series","authors":"Shane Chern ,&nbsp;Ernest X.W. Xia","doi":"10.1016/j.jcta.2024.105874","DOIUrl":null,"url":null,"abstract":"<div><p>In their study of the truncation of Euler's pentagonal number theorem, Andrews and Merca introduced a partition function <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> to count the number of partitions of <em>n</em> in which <em>k</em> is the least integer that is not a part and there are more parts exceeding <em>k</em> than there are below <em>k</em>. In recent years, two conjectures concerning <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> on truncated theta series were posed by Andrews, Merca, and Yee. In this paper, we prove that the two conjectures are true for sufficiently large <em>n</em> whenever <em>k</em> is fixed.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105874"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652400013X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In their study of the truncation of Euler's pentagonal number theorem, Andrews and Merca introduced a partition function Mk(n) to count the number of partitions of n in which k is the least integer that is not a part and there are more parts exceeding k than there are below k. In recent years, two conjectures concerning Mk(n) on truncated theta series were posed by Andrews, Merca, and Yee. In this paper, we prove that the two conjectures are true for sufficiently large n whenever k is fixed.

安德鲁斯、梅尔卡和易关于截断θ级数的两个猜想
安德鲁斯和梅尔卡在研究欧拉五边形数截断定理时,引入了一个分区函数 Mk(n),用来计算 n 的分区数,其中 k 是不属于分区的最小整数,且超过 k 的分区数多于低于 k 的分区数。近年来,安德鲁斯、梅尔卡和易提出了关于截断θ数列 Mk(n) 的两个猜想。在本文中,我们证明了只要 k 固定不变,对于足够大的 n,这两个猜想都是真的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信