Designing high aspect ratio wings: A review of concepts and approaches

IF 11.5 1区 工程技术 Q1 ENGINEERING, AEROSPACE
Yiyuan Ma , Ali Elham
{"title":"Designing high aspect ratio wings: A review of concepts and approaches","authors":"Yiyuan Ma ,&nbsp;Ali Elham","doi":"10.1016/j.paerosci.2024.100983","DOIUrl":null,"url":null,"abstract":"<div><p>In response to escalating environmental concerns and stringent economic constraints, there is an urgent need to develop aircraft technologies and configurations that substantially enhance efficiency. A prominent trend in aircraft design aimed at minimizing lift-induced drag, improving fuel efficiency, and mitigating emissions is the adoption of increased wing Aspect Ratio (AR). This paper examines the evolution and current advancements in High Aspect Ratio Wing (HARW) and Ultra-High Aspect Ratio Wing (UHARW) configurations for next-generation transport aircraft. Beginning with a historical overview of wing AR in transport, the paper examines the progress in designing both conventional and novel HARW/UHARW configurations. It reviews a range of promising concepts, such as strut-braced wing, truss-braced wing, twin-fuselage, and folding wingtips, for their potential in HARW applications. The paper emphasizes tailored conceptual design methods and tools specifically developed for HARW/UHARW configurations. It provides an in-depth analysis of preliminary design approaches for HARW aircraft, systematically covering aspects including aerodynamic, aeroelastic, aerostructural, and experimental designs. Key insights from leading-edge research are distilled, highlighting the significant advancements and pinpointing the current challenges in the field. The comprehensive review underscores the critical role of HARW/UHARW in enhancing aircraft performance, particularly in fuel efficiency and environmental impact, setting the stage for future transformative developments in aircraft efficiency.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"145 ","pages":"Article 100983"},"PeriodicalIF":11.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042124000095","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

In response to escalating environmental concerns and stringent economic constraints, there is an urgent need to develop aircraft technologies and configurations that substantially enhance efficiency. A prominent trend in aircraft design aimed at minimizing lift-induced drag, improving fuel efficiency, and mitigating emissions is the adoption of increased wing Aspect Ratio (AR). This paper examines the evolution and current advancements in High Aspect Ratio Wing (HARW) and Ultra-High Aspect Ratio Wing (UHARW) configurations for next-generation transport aircraft. Beginning with a historical overview of wing AR in transport, the paper examines the progress in designing both conventional and novel HARW/UHARW configurations. It reviews a range of promising concepts, such as strut-braced wing, truss-braced wing, twin-fuselage, and folding wingtips, for their potential in HARW applications. The paper emphasizes tailored conceptual design methods and tools specifically developed for HARW/UHARW configurations. It provides an in-depth analysis of preliminary design approaches for HARW aircraft, systematically covering aspects including aerodynamic, aeroelastic, aerostructural, and experimental designs. Key insights from leading-edge research are distilled, highlighting the significant advancements and pinpointing the current challenges in the field. The comprehensive review underscores the critical role of HARW/UHARW in enhancing aircraft performance, particularly in fuel efficiency and environmental impact, setting the stage for future transformative developments in aircraft efficiency.

设计高宽比机翼:概念和方法综述
为应对不断升级的环境问题和严格的经济限制,迫切需要开发能大幅提高效率的飞机技术和配置。飞机设计的一个突出趋势是采用更大的机翼纵横比(AR),以最大限度地减少升力引起的阻力、提高燃油效率并减少排放。本文探讨了用于下一代运输机的高纵横比机翼(HARW)和超高纵横比机翼(UHARW)配置的演变和当前进展。本文从运输机机翼 AR 的历史概述开始,探讨了传统和新型 HARW/UHARW 配置的设计进展。论文回顾了一系列有前途的概念,如支柱支撑翼、桁架支撑翼、双机身和折叠翼尖,以了解它们在 HARW 应用中的潜力。论文强调了专门为 HARW/UHARW 配置开发的定制概念设计方法和工具。它深入分析了 HARW 飞机的初步设计方法,系统地涵盖了空气动力、气动弹性、气动结构和实验设计等方面。书中提炼了前沿研究的关键见解,突出了该领域的重大进展,并指出了当前面临的挑战。全面综述强调了 HARW/UHARW 在提高飞机性能,特别是燃油效率和环境影响方面的关键作用,为未来飞机效率的变革性发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Aerospace Sciences
Progress in Aerospace Sciences 工程技术-工程:宇航
CiteScore
20.20
自引率
3.10%
发文量
41
审稿时长
5 months
期刊介绍: "Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information. The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信