Eco-innovative electrochemical sensing for precise detection of vanillin and sulfadiazine additives in confectioneries

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Yen-Yi Lee , Balasubramanian Sriram , Sea-Fue Wang , Megha Maria Stanley , Wan-Ching Lin , Sakthivel Kogularasu , Guo-Ping Chang-Chien , Mary George
{"title":"Eco-innovative electrochemical sensing for precise detection of vanillin and sulfadiazine additives in confectioneries","authors":"Yen-Yi Lee ,&nbsp;Balasubramanian Sriram ,&nbsp;Sea-Fue Wang ,&nbsp;Megha Maria Stanley ,&nbsp;Wan-Ching Lin ,&nbsp;Sakthivel Kogularasu ,&nbsp;Guo-Ping Chang-Chien ,&nbsp;Mary George","doi":"10.1016/j.apsadv.2024.100584","DOIUrl":null,"url":null,"abstract":"<div><p>The continuous emergence of food additives and contaminants in edibles, especially confectioneries, demands advanced detection methods to ensure public health and safety. Vanillin (VAL) and sulfadiazine (SD) are of paramount concern due to their extensive application in various products. While VAL is favored for its flavoring attributes, SD, a common antibiotic, can inadvertently contaminate food items. For accurate and swift detection of these compounds, we introduced an innovative electrochemical sensor using cobalt oxide nanostructures. Notably, synthesizing these nanostructures through a green approach using glucose and starch is a significant advancement, offering both environmental benefits and enhanced material properties. The novelty of the material lies in its eco-friendly synthesis route and superior electrocatalytic performance. Preliminary results indicate a promising limit of detection (LOD) VAL= 0.003 µM &amp; SD= 0.0055 µM and a broad linear range 0.02–209 µM emphasizing its potential for real-world food quality monitoring. This work, therefore, provides a crucial intersection of sustainable material synthesis and effective food contaminant detection, heralding a new era in food safety evaluation.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"20 ","pages":"Article 100584"},"PeriodicalIF":7.5000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000126/pdfft?md5=5d0f5f86e7e078dbd3be9edc519643e4&pid=1-s2.0-S2666523924000126-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924000126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The continuous emergence of food additives and contaminants in edibles, especially confectioneries, demands advanced detection methods to ensure public health and safety. Vanillin (VAL) and sulfadiazine (SD) are of paramount concern due to their extensive application in various products. While VAL is favored for its flavoring attributes, SD, a common antibiotic, can inadvertently contaminate food items. For accurate and swift detection of these compounds, we introduced an innovative electrochemical sensor using cobalt oxide nanostructures. Notably, synthesizing these nanostructures through a green approach using glucose and starch is a significant advancement, offering both environmental benefits and enhanced material properties. The novelty of the material lies in its eco-friendly synthesis route and superior electrocatalytic performance. Preliminary results indicate a promising limit of detection (LOD) VAL= 0.003 µM & SD= 0.0055 µM and a broad linear range 0.02–209 µM emphasizing its potential for real-world food quality monitoring. This work, therefore, provides a crucial intersection of sustainable material synthesis and effective food contaminant detection, heralding a new era in food safety evaluation.

Abstract Image

用于精确检测糖果中香兰素和磺胺嘧啶添加剂的生态创新电化学传感技术
食品(尤其是糖果)中食品添加剂和污染物的不断涌现要求采用先进的检测方法来确保公众健康和安全。香兰素(VAL)和磺胺嘧啶(SD)因广泛应用于各种产品而备受关注。VAL 因其调味特性而备受青睐,而 SD 则是一种常见的抗生素,可能会在不经意间污染食品。为了准确、快速地检测这些化合物,我们利用氧化钴纳米结构推出了一种创新的电化学传感器。值得注意的是,通过使用葡萄糖和淀粉的绿色方法合成这些纳米结构是一项重大进步,不仅具有环境效益,还增强了材料性能。该材料的新颖之处在于其环保的合成路线和卓越的电催化性能。初步结果表明,该材料的检测限(LOD)为 VAL= 0.003 µM & SD= 0.0055 µM,线性范围为 0.02-209 µM。因此,这项工作为可持续材料合成和有效的食品污染物检测提供了一个重要的交叉点,预示着食品安全评估进入了一个新时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信