Technical Considerations, Applications, and Benefits of Organogels in Topical Drug Delivery Systems.

Abhishek Yadav, Vikas Jhawat, Rahul Pratap Singh, Sunita Chauhan, Rohit Dutt, Rajesh Goyal, Deependra Singh
{"title":"Technical Considerations, Applications, and Benefits of Organogels in Topical Drug Delivery Systems.","authors":"Abhishek Yadav, Vikas Jhawat, Rahul Pratap Singh, Sunita Chauhan, Rohit Dutt, Rajesh Goyal, Deependra Singh","doi":"10.2174/0126673878277455240214110033","DOIUrl":null,"url":null,"abstract":"<p><p>Organogels represent semi-solid systems where an organic liquid phase is entrapped within a three-dimensional network formed by self-assembled, crosslinked, or entangled gelator fibers. These versatile materials find applications in a wide range of fields, including chemistry, pharmaceuticals, cosmetics, biotechnology, and food technology. Notably, in pharmacology, they serve as valuable platforms for drug and vaccine delivery, facilitating the transport of active ingredients through various routes such as transdermal, oral, and parenteral. However, their previous utility as drug delivery systems was hindered by the toxicity associated with the organic solvents used. The pharmacokinetics of medications delivered <i>via</i> organogels are primarily influenced by the distinctive properties of these materials, specifically their \"high permeability and poor aqueous solubility,\" which can impact the bioavailability of the drugs. Organogels can be employed topically or for the controlled release of medications through cutaneous administration and percutaneous absorption, expanding their scope of application beyond conventional drug delivery methods. Organogels hold significant promise as drug delivery vehicles due to their biocompatibility, non-irritating properties, and thermoremanent characteristics. They enable the formulation of diverse drug delivery systems by incorporating both hydrophilic and hydrophobic bioactive compounds within the gel matrix. This comprehensive review offers an overview of organogels, encompassing their nature, synthesis, characterization, and properties. Special attention is directed towards cutting-edge technologies employed in designing organogels as potential controlled delivery systems, with a focus on their emerging therapeutic applications.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":"12-20"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent advances in drug delivery and formulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0126673878277455240214110033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Organogels represent semi-solid systems where an organic liquid phase is entrapped within a three-dimensional network formed by self-assembled, crosslinked, or entangled gelator fibers. These versatile materials find applications in a wide range of fields, including chemistry, pharmaceuticals, cosmetics, biotechnology, and food technology. Notably, in pharmacology, they serve as valuable platforms for drug and vaccine delivery, facilitating the transport of active ingredients through various routes such as transdermal, oral, and parenteral. However, their previous utility as drug delivery systems was hindered by the toxicity associated with the organic solvents used. The pharmacokinetics of medications delivered via organogels are primarily influenced by the distinctive properties of these materials, specifically their "high permeability and poor aqueous solubility," which can impact the bioavailability of the drugs. Organogels can be employed topically or for the controlled release of medications through cutaneous administration and percutaneous absorption, expanding their scope of application beyond conventional drug delivery methods. Organogels hold significant promise as drug delivery vehicles due to their biocompatibility, non-irritating properties, and thermoremanent characteristics. They enable the formulation of diverse drug delivery systems by incorporating both hydrophilic and hydrophobic bioactive compounds within the gel matrix. This comprehensive review offers an overview of organogels, encompassing their nature, synthesis, characterization, and properties. Special attention is directed towards cutting-edge technologies employed in designing organogels as potential controlled delivery systems, with a focus on their emerging therapeutic applications.

有机凝胶在局部给药系统中的技术考虑因素、应用和优势。
有机凝胶是一种半固体体系,其中有机液相被包裹在由自组装、交联或缠结的凝胶体纤维形成的三维网络中。这些用途广泛的材料可应用于化学、制药、化妆品、生物技术和食品技术等多个领域。值得注意的是,在药理学领域,它们是药物和疫苗输送的重要平台,可通过透皮、口服和肠外等各种途径促进活性成分的输送。然而,由于所使用的有机溶剂具有毒性,阻碍了它们以前作为药物输送系统的实用性。通过有机凝胶给药的药代动力学主要受到这些材料独特性质的影响,特别是它们的 "高渗透性和低水溶性",这会影响药物的生物利用度。有机凝胶可用于局部给药或通过皮肤给药和经皮吸收控制药物释放,从而将其应用范围扩大到传统给药方法之外。有机凝胶具有生物相容性、无刺激性和热稳定性等特点,因此很有希望成为一种给药载体。通过在凝胶基质中加入亲水性和疏水性生物活性化合物,它们可以配制出多种给药系统。本综述概述了有机凝胶的性质、合成、表征和特性。文章特别关注了将有机凝胶设计为潜在控制给药系统的前沿技术,并重点介绍了有机凝胶的新兴治疗应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信