{"title":"White Matter Plasticity Underpins Cognitive Gains After Multidomain Adaptive Computerized Cognitive Training.","authors":"Xiangwei Dai, Sihan Liu, Yumeng Li, Shijie Long, Xin Li, Chuansheng Chen, Caishui Yang, Junying Zhang, Zhuo Rachel Han, He Li, Jun Wang, Zhanjun Zhang","doi":"10.1093/gerona/glae046","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aims to evaluate the effectiveness of computerized cognitive training (CCT) on white matter (WM) neuroplasticity and neuropsychological performance.</p><p><strong>Methods: </strong>A total of 128 community older adults (64.36 ± 6.14 years) were recruited and randomly assigned to the intervention or control group. Participants in the intervention group received a home-based, multidomain, and adaptive CCT for 30 minutes, 2 days per week for 1 year. Neuropsychological assessments, diffusion magnetic resonance imaging (MRI), and T1-weighted structural MRI were performed at the pre- and post-intervention visits.</p><p><strong>Results: </strong>Eighty-one of 128 participants (41 in the intervention group and 40 in the control group) completed the 1-year intervention, and 61 of them (27 in the intervention group and 34 in the control group) underwent MRI scans twice. After excluding attrition bias, a significant time-by-group interaction on the Stroop Color-Word Test (SCWT; F = 51.85, p < .001) was found, showing improvement in the intervention group and a decline in the control group. At the brain level, the intervention group exhibited increased axial diffusivity in the left posterior thalamic radiation, and this increase was significantly correlated with reduced SCWT reaction time (r = ‒0.42, p = .029). No significant time-by-group interactions were found for gray matter volume.</p><p><strong>Conclusions: </strong>Our findings suggest that conducting multidomain adaptive CCT is an effective and feasible method to counteract cognitive decline in older adults, with WM neuroplasticity underpinning cognitive improvements. This study contributes to the understanding of the neural basis for the beneficial effect of CCT for older adults.</p>","PeriodicalId":94243,"journal":{"name":"The journals of gerontology. Series A, Biological sciences and medical sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journals of gerontology. Series A, Biological sciences and medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glae046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study aims to evaluate the effectiveness of computerized cognitive training (CCT) on white matter (WM) neuroplasticity and neuropsychological performance.
Methods: A total of 128 community older adults (64.36 ± 6.14 years) were recruited and randomly assigned to the intervention or control group. Participants in the intervention group received a home-based, multidomain, and adaptive CCT for 30 minutes, 2 days per week for 1 year. Neuropsychological assessments, diffusion magnetic resonance imaging (MRI), and T1-weighted structural MRI were performed at the pre- and post-intervention visits.
Results: Eighty-one of 128 participants (41 in the intervention group and 40 in the control group) completed the 1-year intervention, and 61 of them (27 in the intervention group and 34 in the control group) underwent MRI scans twice. After excluding attrition bias, a significant time-by-group interaction on the Stroop Color-Word Test (SCWT; F = 51.85, p < .001) was found, showing improvement in the intervention group and a decline in the control group. At the brain level, the intervention group exhibited increased axial diffusivity in the left posterior thalamic radiation, and this increase was significantly correlated with reduced SCWT reaction time (r = ‒0.42, p = .029). No significant time-by-group interactions were found for gray matter volume.
Conclusions: Our findings suggest that conducting multidomain adaptive CCT is an effective and feasible method to counteract cognitive decline in older adults, with WM neuroplasticity underpinning cognitive improvements. This study contributes to the understanding of the neural basis for the beneficial effect of CCT for older adults.